

Restic Documentation

	Introduction

	Installation
	Packages

	Official Binaries

	Docker Container

	From Source

	Autocompletion

	Preparing a new repository
	Local

	SFTP

	REST Server

	Amazon S3

	Minio Server

	OpenStack Swift

	Backblaze B2

	Microsoft Azure Blob Storage

	Google Cloud Storage

	Other Services via rclone

	Password prompt on Windows

	Backing up
	Including and Excluding Files

	Comparing Snapshots

	Backing up special items and metadata

	Reading data from stdin

	Tags for backup

	Working with repositories
	Listing all snapshots

	Checking a repo’s integrity and consistency

	Restoring from backup
	Restoring from a snapshot

	Restore using mount

	Printing files to stdout

	Removing backup snapshots
	Remove a single snapshot

	Removing snapshots according to a policy

	Encryption
	Manage repository keys

	Scripting
	Check if a repository is already initialized

	Examples
	Setting up restic with Amazon S3

	Backing up your system without running restic as root

	Participating
	Debugging

	Contributing

	Security

	Compatibility

	Building documentation

	References
	Design

	Local Cache

	REST Backend

	Talks

	FAQ
	restic check reports packs that aren’t referenced in any index, is my repository broken?

	How can I specify encryption passwords automatically?

	How to prioritize restic’s IO and CPU time

	Creating new repo on a Synology NAS via sftp fails

	Manual
	Usage help

	Manage tags

	Under the hood

	Scripting

	Temporary files

	Caching

Introduction

Restic is a fast and secure backup program. In the following sections, we will
present typical workflows, starting with installing, preparing a new
repository, and making the first backup.

Installation

Packages

Note that if at any point the package you’re trying to use is outdated, you
always have the option to use an official binary from the restic project.

These are up to date binaries, built in a reproducible and verifiable way, that
you can download and run without having to do additional installation work.

Please see the Official Binaries section below for various downloads.

Mac OS X

If you are using Mac OS X, you can install restic using the
homebrew [http://brew.sh/] package manager:

$ brew install restic

Arch Linux

On Arch Linux [https://www.archlinux.org/], there is a package called restic-git
which can be installed from AUR, e.g. with pacaur:

$ pacaur -S restic-git

Nix & NixOS

If you are using Nix [https://nixos.org/nix/] or NixOS [https://nixos.org/]
there is a package available named restic.
It can be installed uisng nix-env:

$ nix-env --install restic

Debian

On Debian, there’s a package called restic which can be
installed from the official repos, e.g. with apt-get:

$ apt-get install restic

Warning

Please be aware that, at the time of writing, Debian stable
has restic version 0.3.3 which is very old. The testing and unstable
branches have recent versions of restic.

RHEL & CentOS

restic can be installed via copr repository.

$ yum install yum-plugin-copr
$ yum copr enable copart/restic
$ yum install restic

Fedora

restic can be installed via copr repository.

$ dnf install dnf-plugin-core
$ dnf copr enable copart/restic
$ dnf install restic

Solus

restic can be installed from the official repo of Solus via the eopkg package manager:

$ eopkg install restic

OpenBSD

On OpenBSD 6.3 and greater, you can install restic using pkg_add:

pkg_add restic

Official Binaries

Stable Releases

You can download the latest stable release versions of restic from the restic
release page [https://github.com/restic/restic/releases/latest]. These builds
are considered stable and releases are made regularly in a controlled manner.

There’s both pre-compiled binaries for different platforms as well as the source
code available for download. Just download and run the one matching your system.

Unstable Builds

Another option is to use the latest builds for the master branch, available on
the restic beta download site [https://beta.restic.net/?sort=time&order=desc]. These too are pre-compiled
and ready to run, and a new version is built every time a push is made to the
master branch.

Windows

On Windows, put the restic.exe into %SystemRoot%System32 to use restic
in scripts without the need for absolute paths to the binary. This requires
Admin rights.

Docker Container

We’re maintaining a bare docker container with just a few files and the restic
binary, you can get it with docker pull like this:

$ docker pull restic/restic

Note

Another docker container which offers more configuration options is

available as a contribution (Thank you!). You can find it at

https://github.com/Lobaro/restic-backup-docker

From Source

restic is written in the Go programming language and you need at least
Go version 1.8. Building restic may also work with older versions of Go,
but that’s not supported. See the Getting
started [https://golang.org/doc/install] guide of the Go project for
instructions how to install Go.

In order to build restic from source, execute the following steps:

$ git clone https://github.com/restic/restic
[...]

$ cd restic

$ go run build.go

You can easily cross-compile restic for all supported platforms, just
supply the target OS and platform via the command-line options like this
(for Windows and FreeBSD respectively):

$ go run build.go --goos windows --goarch amd64

$ go run build.go --goos freebsd --goarch 386

$ go run build.go --goos linux --goarch arm --goarm 6

The resulting binary is statically linked and does not require any
libraries.

At the moment, the only tested compiler for restic is the official Go
compiler. Building restic with gccgo may work, but is not supported.

Autocompletion

Restic can write out man pages and bash/zsh compatible autocompletion scripts:

$./restic generate --help

The "generate" command writes automatically generated files like the man pages
and the auto-completion files for bash and zsh).

Usage:
 restic generate [command] [flags]

Flags:
 --bash-completion file write bash completion file
 -h, --help help for generate
 --man directory write man pages to directory
 --zsh-completion file write zsh completion file

Example for using sudo to write a bash completion script directly to the system-wide location:

$ sudo ./restic generate --bash-completion /etc/bash_completion.d/restic
writing bash completion file to /etc/bash_completion.d/restic

Preparing a new repository

The place where your backups will be saved at is called a “repository”.
This chapter explains how to create (“init”) such a repository. The repository
can be stored locally, or on some remote server or service. We’ll first cover
using a local repository, the remaining sections of this chapter cover all the
other options. You can skip to the next chapter once you’ve read the relevant
section here.

Local

In order to create a repository at /srv/restic-repo, run the following
command and enter the same password twice:

$ restic init --repo /srv/restic-repo
enter password for new backend:
enter password again:
created restic backend 085b3c76b9 at /srv/restic-repo
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

Warning

Remembering your password is important! If you lose it, you won’t be
able to access data stored in the repository.

For automated backups, restic accepts the repository location in the
environment variable RESTIC_REPOSITORY. The password can be read
from a file (via the option --password-file or the environment variable
RESTIC_PASSWORD_FILE) or the environment variable RESTIC_PASSWORD.

SFTP

In order to backup data via SFTP, you must first set up a server with
SSH and let it know your public key. Passwordless login is really
important since restic fails to connect to the repository if the server
prompts for credentials.

Once the server is configured, the setup of the SFTP repository can
simply be achieved by changing the URL scheme in the init command:

$ restic -r sftp:user@host:/srv/restic-repo init
enter password for new backend:
enter password again:
created restic backend f1c6108821 at sftp:user@host:/srv/restic-repo
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

You can also specify a relative (read: no slash (/) character at the
beginning) directory, in this case the dir is relative to the remote
user’s home directory.

Note

Please be aware that sftp servers do not expand the tilde character
(~) normally used as an alias for a user’s home directory. If you
want to specify a path relative to the user’s home directory, pass a
relative path to the sftp backend.

The backend config string does not allow specifying a port. If you need
to contact an sftp server on a different port, you can create an entry
in the ssh file, usually located in your user’s home directory at
~/.ssh/config or in /etc/ssh/ssh_config:

Host foo
 User bar
 Port 2222

Then use the specified host name foo normally (you don’t need to
specify the user name in this case):

$ restic -r sftp:foo:/srv/restic-repo init

You can also add an entry with a special host name which does not exist,
just for use with restic, and use the Hostname option to set the
real host name:

Host restic-backup-host
 Hostname foo
 User bar
 Port 2222

Then use it in the backend specification:

$ restic -r sftp:restic-backup-host:/srv/restic-repo init

Last, if you’d like to use an entirely different program to create the
SFTP connection, you can specify the command to be run with the option
-o sftp.command="foobar".

REST Server

In order to backup data to the remote server via HTTP or HTTPS protocol,
you must first set up a remote REST
server [https://github.com/restic/rest-server] instance. Once the
server is configured, accessing it is achieved by changing the URL
scheme like this:

$ restic -r rest:http://host:8000/

Depending on your REST server setup, you can use HTTPS protocol,
password protection, or multiple repositories. Or any combination of
those features, as you see fit. TCP/IP port is also configurable. Here
are some more examples:

$ restic -r rest:https://host:8000/
$ restic -r rest:https://user:pass@host:8000/
$ restic -r rest:https://user:pass@host:8000/my_backup_repo/

If you use TLS, restic will use the system’s CA certificates to verify the
server certificate. When the verification fails, restic refuses to proceed and
exits with an error. If you have your own self-signed certificate, or a custom
CA certificate should be used for verification, you can pass restic the
certificate filename via the --cacert option.

REST server uses exactly the same directory structure as local backend,
so you should be able to access it both locally and via HTTP, even
simultaneously.

Amazon S3

Restic can backup data to any Amazon S3 bucket. However, in this case,
changing the URL scheme is not enough since Amazon uses special security
credentials to sign HTTP requests. By consequence, you must first setup
the following environment variables with the credentials you obtained
while creating the bucket.

$ export AWS_ACCESS_KEY_ID=<MY_ACCESS_KEY>
$ export AWS_SECRET_ACCESS_KEY=<MY_SECRET_ACCESS_KEY>

You can then easily initialize a repository that uses your Amazon S3 as
a backend, if the bucket does not exist yet it will be created in the
default location:

$ restic -r s3:s3.amazonaws.com/bucket_name init
enter password for new backend:
enter password again:
created restic backend eefee03bbd at s3:s3.amazonaws.com/bucket_name
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

It is not possible at the moment to have restic create a new bucket in a
different location, so you need to create it using a different program.
Afterwards, the S3 server (s3.amazonaws.com) will redirect restic to
the correct endpoint.

Until version 0.8.0, restic used a default prefix of restic, so the files
in the bucket were placed in a directory named restic. If you want to
access a repository created with an older version of restic, specify the path
after the bucket name like this:

$ restic -r s3:s3.amazonaws.com/bucket_name/restic [...]

For an S3-compatible server that is not Amazon (like Minio, see below),
or is only available via HTTP, you can specify the URL to the server
like this: s3:http://server:port/bucket_name.

Minio Server

Minio [https://www.minio.io] is an Open Source Object Storage,
written in Go and compatible with AWS S3 API.

	Download and Install Minio
Server [https://minio.io/downloads/#minio-server].

	You can also refer to https://docs.minio.io for step by step guidance
on installation and getting started on Minio Client and Minio Server.

You must first setup the following environment variables with the
credentials of your running Minio Server.

$ export AWS_ACCESS_KEY_ID=<YOUR-MINIO-ACCESS-KEY-ID>
$ export AWS_SECRET_ACCESS_KEY= <YOUR-MINIO-SECRET-ACCESS-KEY>

Now you can easily initialize restic to use Minio server as backend with
this command.

$./restic -r s3:http://localhost:9000/restic init
enter password for new backend:
enter password again:
created restic backend 6ad29560f5 at s3:http://localhost:9000/restic1
Please note that knowledge of your password is required to access
the repository. Losing your password means that your data is irrecoverably lost.

OpenStack Swift

Restic can backup data to an OpenStack Swift container. Because Swift supports
various authentication methods, credentials are passed through environment
variables. In order to help integration with existing OpenStack installations,
the naming convention of those variables follows official python swift client:

For keystone v1 authentication
$ export ST_AUTH=<MY_AUTH_URL>
$ export ST_USER=<MY_USER_NAME>
$ export ST_KEY=<MY_USER_PASSWORD>

For keystone v2 authentication (some variables are optional)
$ export OS_AUTH_URL=<MY_AUTH_URL>
$ export OS_REGION_NAME=<MY_REGION_NAME>
$ export OS_USERNAME=<MY_USERNAME>
$ export OS_PASSWORD=<MY_PASSWORD>
$ export OS_TENANT_ID=<MY_TENANT_ID>
$ export OS_TENANT_NAME=<MY_TENANT_NAME>

For keystone v3 authentication (some variables are optional)
$ export OS_AUTH_URL=<MY_AUTH_URL>
$ export OS_REGION_NAME=<MY_REGION_NAME>
$ export OS_USERNAME=<MY_USERNAME>
$ export OS_PASSWORD=<MY_PASSWORD>
$ export OS_USER_DOMAIN_NAME=<MY_DOMAIN_NAME>
$ export OS_PROJECT_NAME=<MY_PROJECT_NAME>
$ export OS_PROJECT_DOMAIN_NAME=<MY_PROJECT_DOMAIN_NAME>

For authentication based on tokens
$ export OS_STORAGE_URL=<MY_STORAGE_URL>
$ export OS_AUTH_TOKEN=<MY_AUTH_TOKEN>

Restic should be compatible with OpenStack RC file [https://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html]
in most cases.

Once environment variables are set up, a new repository can be created. The
name of swift container and optional path can be specified. If
the container does not exist, it will be created automatically:

$ restic -r swift:container_name:/path init # path is optional
enter password for new backend:
enter password again:
created restic backend eefee03bbd at swift:container_name:/path
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

The policy of new container created by restic can be changed using environment variable:

$ export SWIFT_DEFAULT_CONTAINER_POLICY=<MY_CONTAINER_POLICY>

Backblaze B2

Restic can backup data to any Backblaze B2 bucket. You need to first setup the
following environment variables with the credentials you obtained when signed
into your B2 account:

$ export B2_ACCOUNT_ID=<MY_ACCOUNT_ID>
$ export B2_ACCOUNT_KEY=<MY_SECRET_ACCOUNT_KEY>

You can then easily initialize a repository stored at Backblaze B2. If the
bucket does not exist yet, it will be created:

$ restic -r b2:bucketname:path/to/repo init
enter password for new backend:
enter password again:
created restic backend eefee03bbd at b2:bucketname:path/to/repo
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

The number of concurrent connections to the B2 service can be set with the -o
b2.connections=10. By default, at most five parallel connections are
established.

Microsoft Azure Blob Storage

You can also store backups on Microsoft Azure Blob Storage. Export the Azure
account name and key as follows:

$ export AZURE_ACCOUNT_NAME=<ACCOUNT_NAME>
$ export AZURE_ACCOUNT_KEY=<SECRET_KEY>

Afterwards you can initialize a repository in a container called foo in the
root path like this:

$ restic -r azure:foo:/ init
enter password for new backend:
enter password again:

created restic backend a934bac191 at azure:foo:/
[...]

The number of concurrent connections to the Azure Blob Storage service can be set with the
-o azure.connections=10. By default, at most five parallel connections are
established.

Google Cloud Storage

Restic supports Google Cloud Storage as a backend.

Restic connects to Google Cloud Storage via a service account [https://cloud.google.com/storage/docs/authentication#service_accounts].

For normal restic operation, the service account must have the
storage.objects.{create,delete,get,list} permissions for the bucket. These
are included in the “Storage Object Admin” role.
restic init can create the repository bucket. Doing so requires the
storage.buckets.create permission (“Storage Admin” role). If the bucket
already exists, that permission is unnecessary.

To use the Google Cloud Storage backend, first create a service account key [https://cloud.google.com/storage/docs/authentication#generating-a-private-key]
and download the JSON credentials file.
Second, find the Google Project ID that you can see in the Google Cloud
Platform console at the “Storage/Settings” menu. Export the path to the JSON
key file and the project ID as follows:

$ export GOOGLE_PROJECT_ID=123123123123
$ export GOOGLE_APPLICATION_CREDENTIALS=$HOME/.config/gs-secret-restic-key.json

Restic uses Google’s client library to generate [default authentication
material](https://developers.google.com/identity/protocols/application-default-credentials),
which means if you’re running in Google Container Engine or are otherwise
located on an instance with default service accounts then these should work out
the box.

Once authenticated, you can use the gs: backend type to create a new
repository in the bucket foo at the root path:

$ restic -r gs:foo:/ init
enter password for new backend:
enter password again:

created restic backend bde47d6254 at gs:foo2/
[...]

The number of concurrent connections to the GCS service can be set with the
-o gs.connections=10. By default, at most five parallel connections are
established.

Other Services via rclone

The program rclone [https://rclone.org/] can be used to access many other different services and
store data there. First, you need to install and configure [https://rclone.org/docs/] rclone. The
general backend specification format is rclone:<remote>:<path>, the
<remote>:<path> component will be directly passed to rclone. When you
configure a remote named foo, you can then call restic as follows to
initiate a new repository in the path bar in the repo:

$ restic -r rclone:foo:bar init

Restic takes care of starting and stopping rclone.

As a more concrete example, suppose you have configured a remote named
b2prod for Backblaze B2 with rclone, with a bucket called yggdrasil.
You can then use rclone to list files in the bucket like this:

$ rclone ls b2prod:yggdrasil

In order to create a new repository in the root directory of the bucket, call
restic like this:

$ restic -r rclone:b2prod:yggdrasil init

If you want to use the path foo/bar/baz in the bucket instead, pass this to
restic:

$ restic -r rclone:b2prod:yggdrasil/foo/bar/baz init

Listing the files of an empty repository directly with rclone should return a
listing similar to the following:

$ rclone ls b2prod:yggdrasil/foo/bar/baz
 155 bar/baz/config
 448 bar/baz/keys/4bf9c78049de689d73a56ed0546f83b8416795295cda12ec7fb9465af3900b44

Rclone can be configured with environment variables [https://rclone.org/docs/#environment-variables], so for instance
configuring a bandwidth limit for rclone can be achieved by setting the
RCLONE_BWLIMIT environment variable:

$ export RCLONE_BWLIMIT=1M

For debugging rclone, you can set the environment variable RCLONE_VERBOSE=2.

The rclone backend has two additional options:

	-o rclone.program specifies the path to rclone, the default value is just rclone

	-o rclone.args allows setting the arguments passed to rclone, by default this is serve restic --stdio --b2-hard-delete --drive-use-trash=false

The reason for the two last parameters (--b2-hard-delete and
--drive-use-trash=false) can be found in the corresponding GitHub issue #1657 [https://github.com/restic/restic/pull/1657#issuecomment-377707486].

In order to start rclone, restic will build a list of arguments by joining the
following lists (in this order): rclone.program, rclone.args and as the
last parameter the value that follows the rclone: prefix of the repository
specification.

So, calling restic like this

$ restic -o rclone.program="/path/to/rclone" \
 -o rclone.args="serve restic --stdio --bwlimit 1M --b2-hard-delete --verbose" \
 -r rclone:b2:foo/bar

runs rclone as follows:

$ /path/to/rclone serve restic --stdio --bwlimit 1M --b2-hard-delete --verbose b2:foo/bar

Manually setting rclone.program also allows running a remote instance of
rclone e.g. via SSH on a server, for example:

$ restic -o rclone.program="ssh user@host rclone" -r rclone:b2:foo/bar

The rclone command may also be hard-coded in the SSH configuration or the
user’s public key, in this case it may be sufficient to just start the SSH
connection (and it’s irrelevant what’s passed after rclone: in the
repository specification):

$ restic -o rclone.program="ssh user@host" -r rclone:x

Password prompt on Windows

At the moment, restic only supports the default Windows console
interaction. If you use emulation environments like
MSYS2 [https://msys2.github.io/] or
Cygwin [https://www.cygwin.com/], which use terminals like
Mintty or rxvt, you may get a password error:

You can workaround this by using a special tool called winpty (look
here [https://sourceforge.net/p/msys2/wiki/Porting/] and
here [https://github.com/rprichard/winpty] for detail information).
On MSYS2, you can install winpty as follows:

$ pacman -S winpty
$ winpty restic -r /srv/restic-repo init

Backing up

Now we’re ready to backup some data. The contents of a directory at a
specific point in time is called a “snapshot” in restic. Run the
following command and enter the repository password you chose above
again:

$ restic -r /srv/restic-repo --verbose backup ~/work
open repository
enter password for repository:
password is correct
lock repository
load index files
start scan
start backup
scan finished in 1.837s
processed 1.720 GiB in 0:12
Files: 5307 new, 0 changed, 0 unmodified
Dirs: 1867 new, 0 changed, 0 unmodified
Added: 1.700 GiB
snapshot 40dc1520 saved

As you can see, restic created a backup of the directory and was pretty
fast! The specific snapshot just created is identified by a sequence of
hexadecimal characters, 40dc1520 in this case.

If you don’t pass the --verbose option, restic will print less data (but
you’ll still get a nice live status display).

If you run the command again, restic will create another snapshot of
your data, but this time it’s even faster. This is de-duplication at
work!

$ restic -r /srv/restic-repo backup --verbose ~/work
open repository
enter password for repository:
password is correct
lock repository
load index files
using parent snapshot d875ae93
start scan
start backup
scan finished in 1.881s
processed 1.720 GiB in 0:03
Files: 0 new, 0 changed, 5307 unmodified
Dirs: 0 new, 0 changed, 1867 unmodified
Added: 0 B
snapshot 79766175 saved

You can even backup individual files in the same repository (not passing
--verbose means less output):

$ restic -r /srv/restic-repo backup ~/work.txt
enter password for repository:
password is correct
snapshot 249d0210 saved

If you’re interested in what restic does, pass --verbose twice (or
--verbose 2) to display detailed information about each file and directory
restic encounters:

$ echo 'more data foo bar' >> ~/work.txt

$ restic -r /srv/restic-repo backup --verbose --verbose ~/work.txt
open repository
enter password for repository:
password is correct
lock repository
load index files
using parent snapshot f3f8d56b
start scan
start backup
scan finished in 2.115s
modified /home/user/work.txt, saved in 0.007s (22 B added)
modified /home/user/, saved in 0.008s (0 B added, 378 B metadata)
modified /home/, saved in 0.009s (0 B added, 375 B metadata)
processed 22 B in 0:02
Files: 0 new, 1 changed, 0 unmodified
Dirs: 0 new, 2 changed, 0 unmodified
Data Blobs: 1 new
Tree Blobs: 3 new
Added: 1.116 KiB
snapshot 8dc503fc saved

In fact several hosts may use the same repository to backup directories
and files leading to a greater de-duplication.

Please be aware that when you backup different directories (or the
directories to be saved have a variable name component like a
time/date), restic always needs to read all files and only afterwards
can compute which parts of the files need to be saved. When you backup
the same directory again (maybe with new or changed files) restic will
find the old snapshot in the repo and by default only reads those files
that are new or have been modified since the last snapshot. This is
decided based on the modify date of the file in the file system.

Now is a good time to run restic check to verify that all data
is properly stored in the repository. You should run this command regularly
to make sure the internal structure of the repository is free of errors.

Including and Excluding Files

You can exclude folders and files by specifying exclude patterns, currently
the exclude options are:

	--exclude Specified one or more times to exclude one or more items

	--exclude-caches Specified once to exclude folders containing a special file

	--exclude-file Specified one or more times to exclude items listed in a given file

	--exclude-if-present Specified one or more times to exclude a folders content
if it contains a given file (optionally having a given header)

Let’s say we have a file called excludes.txt with the following content:

	::

	# exclude go-files
.go
exclude foo/x/y/z/bar foo/x/bar foo/bar
foo/*/bar

It can be used like this:

$ restic -r /srv/restic-repo backup ~/work --exclude="*.c" --exclude-file=excludes.txt

This instruct restic to exclude files matching the following criteria:

	All files matching *.go (second line in excludes.txt)

	All files and sub-directories named bar which reside somewhere below a directory called foo (fourth line in excludes.txt)

	All files matching *.c (parameter --exclude)

Please see restic help backup for more specific information about each exclude option.

Patterns use filepath.Glob [https://golang.org/pkg/path/filepath/#Glob] internally,
see filepath.Match [https://golang.org/pkg/path/filepath/#Match] for
syntax. Patterns are tested against the full path of a file/dir to be saved,
even if restic is passed a relative path to save. Environment-variables in
exclude-files are expanded with os.ExpandEnv [https://golang.org/pkg/os/#ExpandEnv].

Patterns need to match on complete path components. For example, the pattern foo:

	matches /dir1/foo/dir2/file and /dir/foo

	does not match /dir/foobar or barfoo

A trailing / is ignored, a leading / anchors the
pattern at the root directory. This means, /bin matches /bin/bash but
does not match /usr/bin/restic.

Regular wildcards cannot be used to match over the
directory separator /. For example: b*ash matches /bin/bash but does not match
/bin/ash.

For this, the special wildcard ** can be used to match arbitrary
sub-directories: The pattern foo/**/bar matches:

	/dir1/foo/dir2/bar/file

	/foo/bar/file

	/tmp/foo/bar

By specifying the option --one-file-system you can instruct restic
to only backup files from the file systems the initially specified files
or directories reside on. For example, calling restic like this won’t
backup /sys or /dev on a Linux system:

$ restic -r /srv/restic-repo backup --one-file-system /

By using the --files-from option you can read the files you want to
backup from a file. This is especially useful if a lot of files have to
be backed up that are not in the same folder or are maybe pre-filtered
by other software.

For example maybe you want to backup files which have a name that matches a
certain pattern:

$ find /tmp/somefiles | grep 'PATTERN' > /tmp/files_to_backup

You can then use restic to backup the filtered files:

$ restic -r /srv/restic-repo backup --files-from /tmp/files_to_backup

Incidentally you can also combine --files-from with the normal files
args:

$ restic -r /srv/restic-repo backup --files-from /tmp/files_to_backup /tmp/some_additional_file

Paths in the listing file can be absolute or relative.

Comparing Snapshots

Restic has a diff command which shows the difference between two snapshots
and displays a small statistic, just pass the command two snapshot IDs:

$ restic -r /srv/restic-repo diff 5845b002 2ab627a6
password is correct
comparing snapshot ea657ce5 to 2ab627a6:

 C /restic/cmd_diff.go
+ /restic/foo
 C /restic/restic

Files: 0 new, 0 removed, 2 changed
Dirs: 1 new, 0 removed
Others: 0 new, 0 removed
Data Blobs: 14 new, 15 removed
Tree Blobs: 2 new, 1 removed
 Added: 16.403 MiB
 Removed: 16.402 MiB

Backing up special items and metadata

Symlinks are archived as symlinks, restic does not follow them.
When you restore, you get the same symlink again, with the same link target
and the same timestamps.

If there is a bind-mount below a directory that is to be saved, restic descends into it.

Device files are saved and restored as device files. This means that e.g. /dev/sda is
archived as a block device file and restored as such. This also means that the content of the
corresponding disk is not read, at least not from the device file.

By default, restic does not save the access time (atime) for any files or other
items, since it is not possible to reliably disable updating the access time by
restic itself. This means that for each new backup a lot of metadata is
written, and the next backup needs to write new metadata again. If you really
want to save the access time for files and directories, you can pass the
--with-atime option to the backup command.

Reading data from stdin

Sometimes it can be nice to directly save the output of a program, e.g.
mysqldump so that the SQL can later be restored. Restic supports
this mode of operation, just supply the option --stdin to the
backup command like this:

$ mysqldump [...] | restic -r /srv/restic-repo backup --stdin

This creates a new snapshot of the output of mysqldump. You can then
use e.g. the fuse mounting option (see below) to mount the repository
and read the file.

By default, the file name stdin is used, a different name can be
specified with --stdin-filename, e.g. like this:

$ mysqldump [...] | restic -r /srv/restic-repo backup --stdin --stdin-filename production.sql

Tags for backup

Snapshots can have one or more tags, short strings which add identifying
information. Just specify the tags for a snapshot one by one with --tag:

$ restic -r /srv/restic-repo backup --tag projectX --tag foo --tag bar ~/work
[...]

The tags can later be used to keep (or forget) snapshots with the forget
command. The command tag can be used to modify tags on an existing
snapshot.

Working with repositories

Listing all snapshots

Now, you can list all the snapshots stored in the repository:

$ restic -r /srv/restic-repo snapshots
enter password for repository:
ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
bdbd3439 2015-05-08 21:45:17 luigi /home/art
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

You can filter the listing by directory path:

$ restic -r /srv/restic-repo snapshots --path="/srv"
enter password for repository:
ID Date Host Tags Directory
--
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

Or filter by host:

$ restic -r /srv/restic-repo snapshots --host luigi
enter password for repository:
ID Date Host Tags Directory
--
bdbd3439 2015-05-08 21:45:17 luigi /home/art
9f0bc19e 2015-05-08 21:46:11 luigi /srv

Combining filters is also possible.

Checking a repo’s integrity and consistency

Imagine your repository is saved on a server that has a faulty hard
drive, or even worse, attackers get privileged access and modify your
backup with the intention to make you restore malicious data:

$ sudo echo "boom" >> backup/index/d795ffa99a8ab8f8e42cec1f814df4e48b8f49129360fb57613df93739faee97

In order to detect these things, it is a good idea to regularly use the
check command to test whether everything is alright, your precious
backup data is consistent and the integrity is unharmed:

$ restic -r /srv/restic-repo check
Load indexes
ciphertext verification failed

Trying to restore a snapshot which has been modified as shown above will
yield the same error:

$ restic -r /srv/restic-repo restore 79766175 --target /tmp/restore-work
Load indexes
ciphertext verification failed

By default, check command does not check that repository data files
are unmodified. Use --read-data parameter to check all repository
data files:

$ restic -r /srv/restic-repo check --read-data
load indexes
check all packs
check snapshots, trees and blobs
read all data

Use --read-data-subset=n/t parameter to check subset of repository data
files. The parameter takes two values, n and t. All repository data
files are logically devided in t roughly equal groups and only files that
belong to the group number n are checked. For example, the following
commands check all repository data files over 5 separate invocations:

$ restic -r /srv/restic-repo check --read-data-subset=1/5
$ restic -r /srv/restic-repo check --read-data-subset=2/5
$ restic -r /srv/restic-repo check --read-data-subset=3/5
$ restic -r /srv/restic-repo check --read-data-subset=4/5
$ restic -r /srv/restic-repo check --read-data-subset=5/5

Restoring from backup

Restoring from a snapshot

Restoring a snapshot is as easy as it sounds, just use the following
command to restore the contents of the latest snapshot to
/tmp/restore-work:

$ restic -r /srv/restic-repo restore 79766175 --target /tmp/restore-work
enter password for repository:
restoring <Snapshot of [/home/user/work] at 2015-05-08 21:40:19.884408621 +0200 CEST> to /tmp/restore-work

Use the word latest to restore the last backup. You can also combine
latest with the --host and --path filters to choose the last
backup for a specific host, path or both.

$ restic -r /srv/restic-repo restore latest --target /tmp/restore-art --path "/home/art" --host luigi
enter password for repository:
restoring <Snapshot of [/home/art] at 2015-05-08 21:45:17.884408621 +0200 CEST> to /tmp/restore-art

Use --exclude and --include to restrict the restore to a subset of
files in the snapshot. For example, to restore a single file:

$ restic -r /srv/restic-repo restore 79766175 --target /tmp/restore-work --include /work/foo
enter password for repository:
restoring <Snapshot of [/home/user/work] at 2015-05-08 21:40:19.884408621 +0200 CEST> to /tmp/restore-work

This will restore the file foo to /tmp/restore-work/work/foo.

Restore using mount

Browsing your backup as a regular file system is also very easy. First,
create a mount point such as /mnt/restic and then use the following
command to serve the repository with FUSE:

$ mkdir /mnt/restic
$ restic -r /srv/restic-repo mount /mnt/restic
enter password for repository:
Now serving /srv/restic-repo at /mnt/restic
Don't forget to umount after quitting!

Mounting repositories via FUSE is not possible on OpenBSD, Solaris/illumos
and Windows.

Restic supports storage and preservation of hard links. However, since
hard links exist in the scope of a filesystem by definition, restoring
hard links from a fuse mount should be done by a program that preserves
hard links. A program that does so is rsync, used with the option
–hard-links.

Printing files to stdout

Sometimes it’s helpful to print files to stdout so that other programs can read
the data directly. This can be achieved by using the dump command, like this:

$ restic -r /srv/restic-repo dump latest production.sql | mysql

Removing backup snapshots

All backup space is finite, so restic allows removing old snapshots.
This can be done either manually (by specifying a snapshot ID to remove)
or by using a policy that describes which snapshots to forget. For all
remove operations, two commands need to be called in sequence:
forget to remove a snapshot and prune to actually remove the
data that was referenced by the snapshot from the repository. This can
be automated with the --prune option of the forget command,
which runs prune automatically if snapshots have been removed.

It is advisable to run restic check after pruning, to make sure
you are alerted, should the internal data structures of the repository
be damaged.

Remove a single snapshot

The command snapshots can be used to list all snapshots in a
repository like this:

$ restic -r /srv/restic-repo snapshots
enter password for repository:
ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
bdbd3439 2015-05-08 21:45:17 luigi /home/art
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

In order to remove the snapshot of /home/art, use the forget
command and specify the snapshot ID on the command line:

$ restic -r /srv/restic-repo forget bdbd3439
enter password for repository:
removed snapshot d3f01f63

Afterwards this snapshot is removed:

$ restic -r /srv/restic-repo snapshots
enter password for repository:
ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

But the data that was referenced by files in this snapshot is still
stored in the repository. To cleanup unreferenced data, the prune
command must be run:

$ restic -r /srv/restic-repo prune
enter password for repository:

counting files in repo
building new index for repo
[0:00] 100.00% 22 / 22 files
repository contains 22 packs (8512 blobs) with 100.092 MiB bytes
processed 8512 blobs: 0 duplicate blobs, 0B duplicate
load all snapshots
find data that is still in use for 1 snapshots
[0:00] 100.00% 1 / 1 snapshots
found 8433 of 8512 data blobs still in use
will rewrite 3 packs
creating new index
[0:00] 86.36% 19 / 22 files
saved new index as 544a5084
done

Afterwards the repository is smaller.

You can automate this two-step process by using the --prune switch
to forget:

$ restic forget --keep-last 1 --prune
snapshots for host mopped, directories /home/user/work:

keep 1 snapshots:
ID Date Host Tags Directory
--
4bba301e 2017-02-21 10:49:18 mopped /home/user/work

remove 1 snapshots:
ID Date Host Tags Directory
--
8c02b94b 2017-02-21 10:48:33 mopped /home/user/work

1 snapshots have been removed, running prune
counting files in repo
building new index for repo
[0:00] 100.00% 37 / 37 packs
repository contains 37 packs (5521 blobs) with 151.012 MiB bytes
processed 5521 blobs: 0 duplicate blobs, 0B duplicate
load all snapshots
find data that is still in use for 1 snapshots
[0:00] 100.00% 1 / 1 snapshots
found 5323 of 5521 data blobs still in use, removing 198 blobs
will delete 0 packs and rewrite 27 packs, this frees 22.106 MiB
creating new index
[0:00] 100.00% 30 / 30 packs
saved new index as b49f3e68
done

Removing snapshots according to a policy

Removing snapshots manually is tedious and error-prone, therefore restic
allows specifying which snapshots should be removed automatically
according to a policy. You can specify how many hourly, daily, weekly,
monthly and yearly snapshots to keep, any other snapshots are removed.
The most important command-line parameter here is --dry-run which
instructs restic to not remove anything but print which snapshots would
be removed.

When forget is run with a policy, restic loads the list of all
snapshots, then groups these by host name and list of directories. The grouping
options can be set with --group-by, to only group snapshots by paths and
tags use --group-by paths,tags. The policy is then applied to each group of
snapshots separately. This is a safety feature.

The forget command accepts the following parameters:

	--keep-last n never delete the n last (most recent) snapshots

	--keep-hourly n for the last n hours in which a snapshot was
made, keep only the last snapshot for each hour.

	--keep-daily n for the last n days which have one or more
snapshots, only keep the last one for that day.

	--keep-weekly n for the last n weeks which have one or more
snapshots, only keep the last one for that week.

	--keep-monthly n for the last n months which have one or more
snapshots, only keep the last one for that month.

	--keep-yearly n for the last n years which have one or more
snapshots, only keep the last one for that year.

	--keep-tag keep all snapshots which have all tags specified by
this option (can be specified multiple times).

Additionally, you can restrict removing snapshots to those which have a
particular hostname with the --hostname parameter, or tags with the
--tag option. When multiple tags are specified, only the snapshots
which have all the tags are considered. For example, the following command
removes all but the latest snapshot of all snapshots that have the tag foo:

$ restic forget --tag foo --keep-last 1

This command removes all but the last snapshot of all snapshots that have
either the foo or bar tag set:

$ restic forget --tag foo --tag bar --keep-last 1

To only keep the last snapshot of all snapshots with both the tag foo and
bar set use:

$ restic forget --tag foo,tag bar --keep-last 1

All the --keep-* options above only count
hours/days/weeks/months/years which have a snapshot, so those without a
snapshot are ignored.

For safety reasons, restic refuses to act on an “empty” policy. For example,
if one were to specify --keep-last 0 to forget all snapshots in the
repository, restic will respond that no snapshots will be removed. To delete
all snapshots, use --keep-last 1 and then finally remove the last
snapshot ID manually (by passing the ID to forget).

All snapshots are evaluated against all matching --keep-* counts. A
single snapshot on 2017-09-30 (Sun) will count as a daily, weekly and monthly.

Let’s explain this with an example: Suppose you have only made a backup
on each Sunday for 12 weeks. Then forget --keep-daily 4 will keep
the last four snapshots for the last four Sundays, but remove the rest.
Only counting the days which have a backup and ignore the ones without
is a safety feature: it prevents restic from removing many snapshots
when no new ones are created. If it was implemented otherwise, running
forget --keep-daily 4 on a Friday would remove all snapshots!

Another example: Suppose you make daily backups for 100 years. Then
forget --keep-daily 7 --keep-weekly 5 --keep-monthly 12 --keep-yearly 75
will keep the most recent 7 daily snapshots, then 4 (remember, 7 dailies
already include a week!) last-day-of-the-weeks and 11 or 12
last-day-of-the-months (11 or 12 depends if the 5 weeklies cross a month).
And finally 75 last-day-of-the-year snapshots. All other snapshots are
removed.

Encryption

“The design might not be perfect, but it’s good. Encryption is a first-class feature,
the implementation looks sane and I guess the deduplication trade-off is worth
it. So… I’m going to use restic for my personal backups.” Filippo Valsorda [https://blog.filippo.io/restic-cryptography/]

Manage repository keys

The key command allows you to set multiple access keys or passwords
per repository. In fact, you can use the list, add, remove, and
passwd (changes a password) sub-commands to manage these keys very precisely:

$ restic -r /srv/restic-repo key list
enter password for repository:
 ID User Host Created
--
*eb78040b username kasimir 2015-08-12 13:29:57

$ restic -r /srv/restic-repo key add
enter password for repository:
enter password for new key:
enter password again:
saved new key as <Key of username@kasimir, created on 2015-08-12 13:35:05.316831933 +0200 CEST>

$ restic -r /srv/restic-repo key list
enter password for repository:
 ID User Host Created
--
 5c657874 username kasimir 2015-08-12 13:35:05
*eb78040b username kasimir 2015-08-12 13:29:57

Scripting

This is a list of how certain tasks may be accomplished when you use
restic via scripts.

Check if a repository is already initialized

You may find a need to check if a repository is already initialized,
perhaps to prevent your script from initializing a repository multiple
times. The command snapshots may be used for this purpose:

$ restic -r /srv/restic-repo snapshots
Fatal: unable to open config file: Stat: stat /srv/restic-repo/config: no such file or directory
Is there a repository at the following location?
/srv/restic-repo

If a repository does not exist, restic will return a non-zero exit code
and print an error message. Note that restic will also return a non-zero
exit code if a different error is encountered (e.g.: incorrect password
to snapshots) and it may print a different error message. If there
are no errors, restic will return a zero exit code and print all the
snapshots.

Examples

Setting up restic with Amazon S3

Preface

This tutorial will show you how to use restic with AWS S3. It will show you how
to navigate the AWS web interface, create an S3 bucket, create a user with
access to only this bucket, and finally how to connect restic to this bucket.

Prerequisites

You should already have a restic binary available on your system that you can
run. Furthermore, you should also have an account with
AWS [https://aws.amazon.com/]. You will likely need to provide credit card
details for billing purposes, even if you use their
free-tier [https://aws.amazon.com/free/].

Logging into AWS

Point your browser to
https://console.aws.amazon.com
and log in using your AWS account. You will be presented with the AWS homepage:

[image: AWS Homepage]
By using the “Services” button in the upper left corder, a menu of all services
provided by AWS can be opened:

[image: AWS Services Menu]
For this tutorial, the Simple Storage Service (S3), as well as Identity and
Access Management (IAM) are relevant.

Creating the bucket

First, a bucket to store your backups in must be created. Using the “Services”
menu, navigate to S3. In case you already have some S3 buckets, you will see a
list of them here:

[image: List of S3 Buckets]
Click the “Create bucket” button and choose a name and region for your new
bucket. For the purpose of this tutorial, the bucket will be named
restic-demo and reside in Frankfurt. Because the bucket name space is
shared among all AWS users, the name restic-demo may not be available to
you. Be creative and choose a unique bucket name.

[image: Create a Bucket]
It is not necessary to configure any special properties or permissions of the
bucket just yet. Therefore, just finish the wizard without making any further
changes:

[image: Review Bucket Creation]
The newly created restic-demo bucket will now appear on the list of S3
buckets:

[image: List With New Bucket]

Creating a user

Use the “Services” menu of the AWS web interface to navigate to IAM. This will
bring you to the IAM homepage. To create a new user, click on the “Users” menu
entry on the left:

[image: IAM Home Page]
In case you already have set-up users with IAM before, you will see a list of
them here. Use the “Add user” button at the top to create a new user:

[image: IAM User List]
For this tutorial, the new user will be named restic-demo-user. Feel free to
choose your own name that best fits your needs. This user will only ever access
AWS through the restic program and not through the web interface. Therefore,
“Programmatic access” is selected for “Access type”:

[image: Choose User Name and Access Type]
During the next step, permissions can be assigned to the new user. To use this
user with restic, it only needs access to the restic-demo bucket. Select
“Attach existing policies directly”, which will bring up a list of pre-defined
policies below. Afterwards, click the “Create policy” button to create a custom
policy:

[image: Assign a Policy]
A new browser window or tab will open with the policy wizard. In Amazon IAM,
policies are defined as JSON documents. For this tutorial, the “Visual editor”
will be used to generate a policy:

[image: Create a New Policy]
For restic to work, two permission statements must be created using the visual
policy editor. The first statement is set up as follows:

Service: S3
Allow Actions: DeleteObject, GetObject, PutObject
Resources: arn:aws:s3:::restic-demo/*

This statement allows restic to create, read and delete objects inside the S3
bucket named restic-demo. Adjust the bucket’s name to the name of the
bucket you created earlier. Next, add a second statement using the “Add
additional permissions” button:

Service: S3
Allow Actions: ListBucket, GetBucketLocation
Resource: arn:aws:s3:::restic-demo

Again, substitute restic-demo with the actual name of your bucket. Note
that, unlike before, there is no /* after the bucket name. This statement
allows restic to list the objects stored in the restic-demo bucket and to
query the bucket’s region.

Continue to the next step by clicking the “Review policy” button and enter a
name and description for this policy. For this tutorial, the policy will be
named restic-demo-policy. Click “Create policy” to finish the process:

[image: Policy Review]
Go back to the browser window or tab where you were previously creating the new
user. Click the button labeled “Refresh” above the list of policies to make
sure the newly created policy is available to you. Afterwards, use the search
function to search for the restic-demo-policy. Select this policy using the
checkbox on the left. Then, continue to the next step.

[image: Attach Policy to User]
The next page will present an overview of the user account that is about to be
created. If everything looks good, click “Create user” to complete the process:

[image: User Creation Review]
After the user has been created, its access credentials will be displayed. They
consist of the “Access key ID” (think user name), and the “Secret access key”
(think password). Copy these down to a safe place.

[image: User Credentials]
You have now completed the configuration in AWS. Feel free to close your web
browser now.

Initializing the restic repository

Open a terminal and make sure you have the restic binary ready. First, choose
a password to encrypt your backups with. In this tutorial, apg is used for
this purpose:

$ apg -a 1 -m 32 -n 1 -M NCL
I9n7G7G0ZpDWA3GOcJbIuwQCGvGUBkU5

Note this password somewhere safe along with your AWS credentials. Next, the
configuration of restic will be placed into environment variables. This will
include sensitive information, such as your AWS secret and repository password.
Therefore, make sure the next commands do not end up in your shell’s
history file. Adjust the contents of the environment variables to fit your
bucket’s name and your user’s API credentials.

$ unset HISTFILE
$ export RESTIC_REPOSITORY="s3:https://s3.amazonaws.com/restic-demo"
$ export AWS_ACCESS_KEY_ID="AKIAJAJSLTZCAZ4SRI5Q"
$ export AWS_SECRET_ACCESS_KEY="LaJtZPoVvGbXsaD2LsxvJZF/7LRi4FhT0TK4gDQq"
$ export RESTIC_PASSWORD="I9n7G7G0ZpDWA3GOcJbIuwQCGvGUBkU5"

After the environment is set up, restic may be called to initialize the
repository:

$./restic init
created restic backend b5c661a86a at s3:https://s3.amazonaws.com/restic-demo

Please note that knowledge of your password is required to access
the repository. Losing your password means that your data is
irrecoverably lost.

restic is now ready to be used with AWS S3. Try to create a backup:

$ dd if=/dev/urandom bs=1M count=10 of=test.bin
10+0 records in
10+0 records out
10485760 bytes (10 MB, 10 MiB) copied, 0,0891322 s, 118 MB/s

$./restic backup test.bin
scan [/home/philip/restic-demo/test.bin]
scanned 0 directories, 1 files in 0:00
[0:04] 100.00% 2.500 MiB/s 10.000 MiB / 10.000 MiB 1 / 1 items ... ETA 0:00
duration: 0:04, 2.47MiB/s
snapshot 10fdbace saved

$./restic snapshots
ID Date Host Tags Directory
--
10fdbace 2017-03-26 16:41:50 blackbox /home/philip/restic-demo/test.bin

A snapshot was created and stored in the S3 bucket. This snapshot may now be
restored:

$ mkdir restore

$./restic restore 10fdbace --target restore
restoring <Snapshot 10fdbace of [/home/philip/restic-demo/test.bin] at 2017-03-26 16:41:50.201418102 +0200 CEST by philip@blackbox> to restore

$ ls restore/
test.bin

The snapshot was successfully restored. This concludes the tutorial.

Backing up your system without running restic as root

Motivation

Creating a complete backup of a machine requires a privileged process
that is able to read all files. On UNIX-like systems this is
traditionally the root user. Processes running as root have
superpower. They cannot only read all files but do also have the power
to modify the system in any possible way.

With great power comes great responsibility. If a process running as
root malfunctions, is exploited, or simply configured in a wrong way it
can cause any possible damage to the system. This means you only want
to run programs as root that you trust completely. And even if you
trust a program, it is good and common practice to run it with the
least possible privileges.

Capabilities on Linux

Fortunately, Linux has functionality to divide root’s power into
single separate capabilities. You can remove these from a process
running as root to restrict it. And you can add capabilities to a
process running as a normal user, which is what we are going to do.

Full backup without root

To be able to completely backup a system, restic has to read all the
files. Luckily Linux knows a capability that allows precisely this. We
can assign this single capability to restic and then run it as an
unprivileged user.

First we create a new user called restic that is going to create
the backups:

root@a3e580b6369d:/# useradd -m restic

Then we download and install the restic binary into the user’s home
directory.

root@a3e580b6369d:/# mkdir ~restic/bin
root@a3e580b6369d:/# curl -L https://github.com/restic/restic/releases/download/v0.8.0/restic_0.8.0_linux_amd64.bz2 | bunzip2 > ~restic/bin/restic

Before we assign any special capability to the restic binary we
restrict its permissions so that only root and the newly created
restic user can execute it. Otherwise another - possibly untrusted -
user could misuse the privileged restic binary to circumvent file
access controls.

root@a3e580b6369d:/# chown root:restic ~restic/bin/restic
root@a3e580b6369d:/# chmod 750 ~restic/bin/restic

Finally we can use setcap to add an extended attribute to the
restic binary. On every execution the system will read the extended
attribute, interpret it and assign capabilities accordingly.

root@a3e580b6369d:/# setcap cap_dac_read_search=+ep ~restic/bin/restic

From now on the user restic can run restic to backup the whole
system.

root@a3e580b6369d:/# sudo -u restic /opt/restic/bin/restic --exclude={/dev,/media,/mnt,/proc,/run,/sys,/tmp,/var/tmp} -r /tmp backup /

Participating

Debugging

The program can be built with debug support like this:

$ go run build.go -tags debug

Afterwards, extensive debug messages are written to the file in
environment variable DEBUG_LOG, e.g.:

$ DEBUG_LOG=/tmp/restic-debug.log restic backup ~/work

If you suspect that there is a bug, you can have a look at the debug
log. Please be aware that the debug log might contain sensitive
information such as file and directory names.

The debug log will always contain all log messages restic generates. You
can also instruct restic to print some or all debug messages to stderr.
These can also be limited to e.g. a list of source files or a list of
patterns for function names. The patterns are globbing patterns (see the
documentation for path.Glob [https://golang.org/pkg/path/#Glob]), multiple
patterns are separated by commas. Patterns are case sensitive.

Printing all log messages to the console can be achieved by setting the
file filter to *:

$ DEBUG_FILES=* restic check

If you want restic to just print all debug log messages from the files
main.go and lock.go, set the environment variable
DEBUG_FILES like this:

$ DEBUG_FILES=main.go,lock.go restic check

The following command line instructs restic to only print debug
statements originating in functions that match the pattern *unlock*
(case sensitive):

$ DEBUG_FUNCS=*unlock* restic check

Contributing

Contributions are welcome! Please open an issue first (or add a
comment to an existing issue) if you plan to work on any code or add a
new feature. This way, duplicate work is prevented and we can discuss
your ideas and design first.

More information and a description of the development environment can be
found in CONTRIBUTING.md [https://github.com/restic/restic/blob/master/CONTRIBUTING.md].
A document describing the design of restic and the data structures stored on the
back end is contained in Design [https://restic.readthedocs.io/en/latest/design.html].

If you’d like to start contributing to restic, but don’t know exactly
what do to, have a look at this great article by Dave Cheney:
Suggestions for contributing to an Open Source
project [http://dave.cheney.net/2016/03/12/suggestions-for-contributing-to-an-open-source-project]
A few issues have been tagged with the label help wanted, you can
start looking at those:
https://github.com/restic/restic/labels/help%20wanted

Security

Important: If you discover something that you believe to be a
possible critical security problem, please do not open a GitHub issue
but send an email directly to alexander@bumpern.de. If possible, please
encrypt your email using the following PGP key
(0x91A6868BD3F7A907 [https://pgp.mit.edu/pks/lookup?op=get&search=0xCF8F18F2844575973F79D4E191A6868BD3F7A907]):

pub 4096R/91A6868BD3F7A907 2014-11-01
 Key fingerprint = CF8F 18F2 8445 7597 3F79 D4E1 91A6 868B D3F7 A907
 uid Alexander Neumann <alexander@bumpern.de>
 sub 4096R/D5FC2ACF4043FDF1 2014-11-01

Compatibility

Backward compatibility for backups is important so that our users are
always able to restore saved data. Therefore restic follows Semantic
Versioning [http://semver.org] to clearly define which versions are
compatible. The repository and data structures contained therein are
considered the “Public API” in the sense of Semantic Versioning. This
goes for all released versions of restic, this may not be the case for
the master branch.

We guarantee backward compatibility of all repositories within one major
version; as long as we do not increment the major version, data can be
read and restored. We strive to be fully backward compatible to all
prior versions.

Building documentation

The restic documentation is built with Sphinx [http://sphinx-doc.org],
therefore building it locally requires a recent Python version and requirements listed in doc/requirements.txt.
This example will guide you through the process using virtualenv [https://virtualenv.pypa.io]:

$ virtualenv venv # create virtual python environment
$ source venv/bin/activate # activate the virtual environment
$ cd doc
$ pip install -r requirements.txt # install dependencies
$ make html # build html documentation
$ # open _build/html/index.html with your favorite browser

References

Design

Terminology

This section introduces terminology used in this document.

Repository: All data produced during a backup is sent to and stored in
a repository in a structured form, for example in a file system
hierarchy with several subdirectories. A repository implementation must
be able to fulfill a number of operations, e.g. list the contents.

Blob: A Blob combines a number of data bytes with identifying
information like the SHA-256 hash of the data and its length.

Pack: A Pack combines one or more Blobs, e.g. in a single file.

Snapshot: A Snapshot stands for the state of a file or directory that
has been backed up at some point in time. The state here means the
content and meta data like the name and modification time for the file
or the directory and its contents.

Storage ID: A storage ID is the SHA-256 hash of the content stored in
the repository. This ID is required in order to load the file from the
repository.

Repository Format

All data is stored in a restic repository. A repository is able to store
data of several different types, which can later be requested based on
an ID. This so-called “storage ID” is the SHA-256 hash of the content of
a file. All files in a repository are only written once and never
modified afterwards. This allows accessing and even writing to the
repository with multiple clients in parallel. Only the prune operation
removes data from the repository.

Repositories consist of several directories and a top-level file called
config. For all other files stored in the repository, the name for
the file is the lower case hexadecimal representation of the storage ID,
which is the SHA-256 hash of the file’s contents. This allows for easy
verification of files for accidental modifications, like disk read
errors, by simply running the program sha256sum on the file and
comparing its output to the file name. If the prefix of a filename is
unique amongst all the other files in the same directory, the prefix may
be used instead of the complete filename.

Apart from the files stored within the keys directory, all files are
encrypted with AES-256 in counter mode (CTR). The integrity of the
encrypted data is secured by a Poly1305-AES message authentication code
(sometimes also referred to as a “signature”).

In the first 16 bytes of each encrypted file the initialisation vector
(IV) is stored. It is followed by the encrypted data and completed by
the 16 byte MAC. The format is: IV || CIPHERTEXT || MAC. The
complete encryption overhead is 32 bytes. For each file, a new random IV
is selected.

The file config is encrypted this way and contains a JSON document
like the following:

{
 "version": 1,
 "id": "5956a3f67a6230d4a92cefb29529f10196c7d92582ec305fd71ff6d331d6271b",
 "chunker_polynomial": "25b468838dcb75"
}

After decryption, restic first checks that the version field contains a
version number that it understands, otherwise it aborts. At the moment,
the version is expected to be 1. The field id holds a unique ID
which consists of 32 random bytes, encoded in hexadecimal. This uniquely
identifies the repository, regardless if it is accessed via SFTP or
locally. The field chunker_polynomial contains a parameter that is
used for splitting large files into smaller chunks (see below).

Repository Layout

The local and sftp backends are implemented using files and
directories stored in a file system. The directory layout is the same
for both backend types.

The basic layout of a repository stored in a local or sftp
backend is shown here:

/tmp/restic-repo
├── config
├── data
│ ├── 21
│ │ └── 2159dd48f8a24f33c307b750592773f8b71ff8d11452132a7b2e2a6a01611be1
│ ├── 32
│ │ └── 32ea976bc30771cebad8285cd99120ac8786f9ffd42141d452458089985043a5
│ ├── 59
│ │ └── 59fe4bcde59bd6222eba87795e35a90d82cd2f138a27b6835032b7b58173a426
│ ├── 73
│ │ └── 73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c
│ [...]
├── index
│ ├── c38f5fb68307c6a3e3aa945d556e325dc38f5fb68307c6a3e3aa945d556e325d
│ └── ca171b1b7394d90d330b265d90f506f9984043b342525f019788f97e745c71fd
├── keys
│ └── b02de829beeb3c01a63e6b25cbd421a98fef144f03b9a02e46eff9e2ca3f0bd7
├── locks
├── snapshots
│ └── 22a5af1bdc6e616f8a29579458c49627e01b32210d09adb288d1ecda7c5711ec
└── tmp

A local repository can be initialized with the restic init command,
e.g.:

$ restic -r /tmp/restic-repo init

The local and sftp backends will auto-detect and accept all layouts described
in the following sections, so that remote repositories mounted locally e.g. via
fuse can be accessed. The layout auto-detection can be overridden by specifying
the option -o local.layout=default, valid values are default and
s3legacy. The option for the sftp backend is named sftp.layout, for the
s3 backend s3.layout.

S3 Legacy Layout

Unfortunately during development the AWS S3 backend uses slightly different
paths (directory names use singular instead of plural for key,
lock, and snapshot files), and the data files are stored directly below
the data directory. The S3 Legacy repository layout looks like this:

/config
/data
 ├── 2159dd48f8a24f33c307b750592773f8b71ff8d11452132a7b2e2a6a01611be1
 ├── 32ea976bc30771cebad8285cd99120ac8786f9ffd42141d452458089985043a5
 ├── 59fe4bcde59bd6222eba87795e35a90d82cd2f138a27b6835032b7b58173a426
 ├── 73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c
[...]
/index
 ├── c38f5fb68307c6a3e3aa945d556e325dc38f5fb68307c6a3e3aa945d556e325d
 └── ca171b1b7394d90d330b265d90f506f9984043b342525f019788f97e745c71fd
/key
 └── b02de829beeb3c01a63e6b25cbd421a98fef144f03b9a02e46eff9e2ca3f0bd7
/lock
/snapshot
 └── 22a5af1bdc6e616f8a29579458c49627e01b32210d09adb288d1ecda7c5711ec

The S3 backend understands and accepts both forms, new backends are
always created with the default layout for compatibility reasons.

Pack Format

All files in the repository except Key and Pack files just contain raw
data, stored as IV || Ciphertext || MAC. Pack files may contain one
or more Blobs of data.

A Pack’s structure is as follows:

EncryptedBlob1 || ... || EncryptedBlobN || EncryptedHeader || Header_Length

At the end of the Pack file is a header, which describes the content.
The header is encrypted and authenticated. Header_Length is the
length of the encrypted header encoded as a four byte integer in
little-endian encoding. Placing the header at the end of a file allows
writing the blobs in a continuous stream as soon as they are read during
the backup phase. This reduces code complexity and avoids having to
re-write a file once the pack is complete and the content and length of
the header is known.

All the blobs (EncryptedBlob1, EncryptedBlobN etc.) are
authenticated and encrypted independently. This enables repository
reorganisation without having to touch the encrypted Blobs. In addition
it also allows efficient indexing, for only the header needs to be read
in order to find out which Blobs are contained in the Pack. Since the
header is authenticated, authenticity of the header can be checked
without having to read the complete Pack.

After decryption, a Pack’s header consists of the following elements:

Type_Blob1 || Length(EncryptedBlob1) || Hash(Plaintext_Blob1) ||
[...]
Type_BlobN || Length(EncryptedBlobN) || Hash(Plaintext_Blobn) ||

This is enough to calculate the offsets for all the Blobs in the Pack.
Length is the length of a Blob as a four byte integer in little-endian
format. The type field is a one byte field and labels the content of a
blob according to the following table:

	Type

	Meaning

	0

	data

	1

	tree

All other types are invalid, more types may be added in the future.

For reconstructing the index or parsing a pack without an index, first
the last four bytes must be read in order to find the length of the
header. Afterwards, the header can be read and parsed, which yields all
plaintext hashes, types, offsets and lengths of all included blobs.

Indexing

Index files contain information about Data and Tree Blobs and the Packs
they are contained in and store this information in the repository. When
the local cached index is not accessible any more, the index files can
be downloaded and used to reconstruct the index. The files are encrypted
and authenticated like Data and Tree Blobs, so the outer structure is
IV || Ciphertext || MAC again. The plaintext consists of a JSON
document like the following:

{
 "supersedes": [
 "ed54ae36197f4745ebc4b54d10e0f623eaaaedd03013eb7ae90df881b7781452"
],
 "packs": [
 {
 "id": "73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c",
 "blobs": [
 {
 "id": "3ec79977ef0cf5de7b08cd12b874cd0f62bbaf7f07f3497a5b1bbcc8cb39b1ce",
 "type": "data",
 "offset": 0,
 "length": 25
 },{
 "id": "9ccb846e60d90d4eb915848add7aa7ea1e4bbabfc60e573db9f7bfb2789afbae",
 "type": "tree",
 "offset": 38,
 "length": 100
 },
 {
 "id": "d3dc577b4ffd38cc4b32122cabf8655a0223ed22edfd93b353dc0c3f2b0fdf66",
 "type": "data",
 "offset": 150,
 "length": 123
 }
]
 }, [...]
]
}

This JSON document lists Packs and the blobs contained therein. In this
example, the Pack 73d04e61 contains two data Blobs and one Tree
blob, the plaintext hashes are listed afterwards.

The field supersedes lists the storage IDs of index files that have
been replaced with the current index file. This happens when index files
are repacked, for example when old snapshots are removed and Packs are
recombined.

There may be an arbitrary number of index files, containing information
on non-disjoint sets of Packs. The number of packs described in a single
file is chosen so that the file size is kept below 8 MiB.

Keys, Encryption and MAC

All data stored by restic in the repository is encrypted with AES-256 in
counter mode and authenticated using Poly1305-AES. For encrypting new
data first 16 bytes are read from a cryptographically secure
pseudorandom number generator as a random nonce. This is used both as
the IV for counter mode and the nonce for Poly1305. This operation needs
three keys: A 32 byte for AES-256 for encryption, a 16 byte AES key and
a 16 byte key for Poly1305. For details see the original paper The
Poly1305-AES message-authentication
code [http://cr.yp.to/mac/poly1305-20050329.pdf] by Dan Bernstein.
The data is then encrypted with AES-256 and afterwards a message
authentication code (MAC) is computed over the ciphertext, everything is
then stored as IV || CIPHERTEXT || MAC.

The directory keys contains key files. These are simple JSON
documents which contain all data that is needed to derive the
repository’s master encryption and message authentication keys from a
user’s password. The JSON document from the repository can be
pretty-printed for example by using the Python module json
(shortened to increase readability):

$ python -mjson.tool /tmp/restic-repo/keys/b02de82*
{
 "hostname": "kasimir",
 "username": "fd0"
 "kdf": "scrypt",
 "N": 65536,
 "r": 8,
 "p": 1,
 "created": "2015-01-02T18:10:13.48307196+01:00",
 "data": "tGwYeKoM0C4j4/9DFrVEmMGAldvEn/+iKC3te/QE/6ox/V4qz58FUOgMa0Bb1cIJ6asrypCx/Ti/pRXCPHLDkIJbNYd2ybC+fLhFIJVLCvkMS+trdywsUkglUbTbi+7+Ldsul5jpAj9vTZ25ajDc+4FKtWEcCWL5ICAOoTAxnPgT+Lh8ByGQBH6KbdWabqamLzTRWxePFoYuxa7yXgmj9A==",
 "salt": "uW4fEI1+IOzj7ED9mVor+yTSJFd68DGlGOeLgJELYsTU5ikhG/83/+jGd4KKAaQdSrsfzrdOhAMftTSih5Ux6w==",
}

When the repository is opened by restic, the user is prompted for the
repository password. This is then used with scrypt, a key derivation
function (KDF), and the supplied parameters (N, r, p and
salt) to derive 64 key bytes. The first 32 bytes are used as the
encryption key (for AES-256) and the last 32 bytes are used as the
message authentication key (for Poly1305-AES). These last 32 bytes are
divided into a 16 byte AES key k followed by 16 bytes of secret key
r. The key r is then masked for use with Poly1305 (see the paper
for details).

Those keys are used to authenticate and decrypt the bytes contained in
the JSON field data with AES-256 and Poly1305-AES as if they were
any other blob (after removing the Base64 encoding). If the
password is incorrect or the key file has been tampered with, the
computed MAC will not match the last 16 bytes of the data, and restic
exits with an error. Otherwise, the data yields a JSON document
which contains the master encryption and message authentication keys for
this repository (encoded in Base64). The command
restic cat masterkey can be used as follows to decrypt and
pretty-print the master key:

$ restic -r /tmp/restic-repo cat masterkey
{
 "mac": {
 "k": "evFWd9wWlndL9jc501268g==",
 "r": "E9eEDnSJZgqwTOkDtOp+Dw=="
 },
 "encrypt": "UQCqa0lKZ94PygPxMRqkePTZnHRYh1k1pX2k2lM2v3Q=",
}

All data in the repository is encrypted and authenticated with these
master keys. For encryption, the AES-256 algorithm in Counter mode is
used. For message authentication, Poly1305-AES is used as described
above.

A repository can have several different passwords, with a key file for
each. This way, the password can be changed without having to re-encrypt
all data.

Snapshots

A snapshot represents a directory with all files and sub-directories at
a given point in time. For each backup that is made, a new snapshot is
created. A snapshot is a JSON document that is stored in an encrypted
file below the directory snapshots in the repository. The filename
is the storage ID. This string is unique and used within restic to
uniquely identify a snapshot.

The command restic cat snapshot can be used as follows to decrypt
and pretty-print the contents of a snapshot file:

$ restic -r /tmp/restic-repo cat snapshot 251c2e58
enter password for repository:
{
 "time": "2015-01-02T18:10:50.895208559+01:00",
 "tree": "2da81727b6585232894cfbb8f8bdab8d1eccd3d8f7c92bc934d62e62e618ffdf",
 "dir": "/tmp/testdata",
 "hostname": "kasimir",
 "username": "fd0",
 "uid": 1000,
 "gid": 100,
 "tags": [
 "NL"
]
}

Here it can be seen that this snapshot represents the contents of the
directory /tmp/testdata. The most important field is tree. When
the meta data (e.g. the tags) of a snapshot change, the snapshot needs
to be re-encrypted and saved. This will change the storage ID, so in
order to relate these seemingly different snapshots, a field
original is introduced which contains the ID of the original
snapshot, e.g. after adding the tag DE to the snapshot above it
becomes:

$ restic -r /tmp/restic-repo cat snapshot 22a5af1b
enter password for repository:
{
 "time": "2015-01-02T18:10:50.895208559+01:00",
 "tree": "2da81727b6585232894cfbb8f8bdab8d1eccd3d8f7c92bc934d62e62e618ffdf",
 "dir": "/tmp/testdata",
 "hostname": "kasimir",
 "username": "fd0",
 "uid": 1000,
 "gid": 100,
 "tags": [
 "NL",
 "DE"
],
 "original": "251c2e5841355f743f9d4ffd3260bee765acee40a6229857e32b60446991b837"
}

Once introduced, the original field is not modified when the
snapshot’s meta data is changed again.

All content within a restic repository is referenced according to its
SHA-256 hash. Before saving, each file is split into variable sized
Blobs of data. The SHA-256 hashes of all Blobs are saved in an ordered
list which then represents the content of the file.

In order to relate these plaintext hashes to the actual location within
a Pack file , an index is used. If the index is not available, the
header of all data Blobs can be read.

Trees and Data

A snapshot references a tree by the SHA-256 hash of the JSON string
representation of its contents. Trees and data are saved in pack files
in a subdirectory of the directory data.

The command restic cat blob can be used to inspect the tree
referenced above (piping the output of the command to jq . so that
the JSON is indented):

$ restic -r /tmp/restic-repo cat blob 2da81727b6585232894cfbb8f8bdab8d1eccd3d8f7c92bc934d62e62e618ffdf | jq .
enter password for repository:
{
 "nodes": [
 {
 "name": "testdata",
 "type": "dir",
 "mode": 493,
 "mtime": "2014-12-22T14:47:59.912418701+01:00",
 "atime": "2014-12-06T17:49:21.748468803+01:00",
 "ctime": "2014-12-22T14:47:59.912418701+01:00",
 "uid": 1000,
 "gid": 100,
 "user": "fd0",
 "inode": 409704562,
 "content": null,
 "subtree": "b26e315b0988ddcd1cee64c351d13a100fedbc9fdbb144a67d1b765ab280b4dc"
 }
]
}

A tree contains a list of entries (in the field nodes) which contain
meta data like a name and timestamps. When the entry references a
directory, the field subtree contains the plain text ID of another
tree object.

When the command restic cat blob is used, the plaintext ID is needed
to print a tree. The tree referenced above can be dumped as follows:

$ restic -r /tmp/restic-repo cat blob b26e315b0988ddcd1cee64c351d13a100fedbc9fdbb144a67d1b765ab280b4dc
enter password for repository:
{
 "nodes": [
 {
 "name": "testfile",
 "type": "file",
 "mode": 420,
 "mtime": "2014-12-06T17:50:23.34513538+01:00",
 "atime": "2014-12-06T17:50:23.338468713+01:00",
 "ctime": "2014-12-06T17:50:23.34513538+01:00",
 "uid": 1000,
 "gid": 100,
 "user": "fd0",
 "inode": 416863351,
 "size": 1234,
 "links": 1,
 "content": [
 "50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d"
]
 },
 [...]
]
}

This tree contains a file entry. This time, the subtree field is not
present and the content field contains a list with one plain text
SHA-256 hash.

The command restic cat blob can also be used to extract and decrypt
data given a plaintext ID, e.g. for the data mentioned above:

$ restic -r /tmp/restic-repo cat blob 50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d | sha256sum
enter password for repository:
50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d -

As can be seen from the output of the program sha256sum, the hash
matches the plaintext hash from the map included in the tree above, so
the correct data has been returned.

Locks

The restic repository structure is designed in a way that allows
parallel access of multiple instance of restic and even parallel writes.
However, there are some functions that work more efficient or even
require exclusive access of the repository. In order to implement these
functions, restic processes are required to create a lock on the
repository before doing anything.

Locks come in two types: Exclusive and non-exclusive locks. At most one
process can have an exclusive lock on the repository, and during that
time there must not be any other locks (exclusive and non-exclusive).
There may be multiple non-exclusive locks in parallel.

A lock is a file in the subdir locks whose filename is the storage
ID of the contents. It is encrypted and authenticated the same way as
other files in the repository and contains the following JSON structure:

{
 "time": "2015-06-27T12:18:51.759239612+02:00",
 "exclusive": false,
 "hostname": "kasimir",
 "username": "fd0",
 "pid": 13607,
 "uid": 1000,
 "gid": 100
}

The field exclusive defines the type of lock. When a new lock is to
be created, restic checks all locks in the repository. When a lock is
found, it is tested if the lock is stale, which is the case for locks
with timestamps older than 30 minutes. If the lock was created on the
same machine, even for younger locks it is tested whether the process is
still alive by sending a signal to it. If that fails, restic assumes
that the process is dead and considers the lock to be stale.

When a new lock is to be created and no other conflicting locks are
detected, restic creates a new lock, waits, and checks if other locks
appeared in the repository. Depending on the type of the other locks and
the lock to be created, restic either continues or fails.

Backups and Deduplication

For creating a backup, restic scans the source directory for all files,
sub-directories and other entries. The data from each file is split into
variable length Blobs cut at offsets defined by a sliding window of 64
byte. The implementation uses Rabin Fingerprints for implementing this
Content Defined Chunking (CDC). An irreducible polynomial is selected at
random and saved in the file config when a repository is
initialized, so that watermark attacks are much harder.

Files smaller than 512 KiB are not split, Blobs are of 512 KiB to 8 MiB
in size. The implementation aims for 1 MiB Blob size on average.

For modified files, only modified Blobs have to be saved in a subsequent
backup. This even works if bytes are inserted or removed at arbitrary
positions within the file.

Threat Model

The design goals for restic include being able to securely store backups
in a location that is not completely trusted, e.g. a shared system where
others can potentially access the files or (in the case of the system
administrator) even modify or delete them.

General assumptions:

	The host system a backup is created on is trusted. This is the most
basic requirement, and essential for creating trustworthy backups.

The restic backup program guarantees the following:

	Accessing the unencrypted content of stored files and metadata should
not be possible without a password for the repository. Everything
except the metadata included for informational purposes in the key
files is encrypted and authenticated.

	Modifications (intentional or unintentional) can be detected
automatically on several layers:

	For all accesses of data stored in the repository it is checked
whether the cryptographic hash of the contents matches the storage
ID (the file’s name). This way, modifications (bad RAM, broken
harddisk) can be detected easily.

	Before decrypting any data, the MAC on the encrypted data is
checked. If there has been a modification, the MAC check will
fail. This step happens even before the data is decrypted, so data
that has been tampered with is not decrypted at all.

However, the restic backup program is not designed to protect against
attackers deleting files at the storage location. There is nothing that
can be done about this. If this needs to be guaranteed, get a secure
location without any access from third parties. If you assume that
attackers have write access to your files at the storage location,
attackers are able to figure out (e.g. based on the timestamps of the
stored files) which files belong to what snapshot. When only these files
are deleted, the particular snapshot vanished and all snapshots
depending on data that has been added in the snapshot cannot be restored
completely. Restic is not designed to detect this attack.

Local Cache

In order to speed up certain operations, restic manages a local cache of data.
This document describes the data structures for the local cache with version 1.

Versions

The cache directory is selected according to the XDG base dir specification [http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html].
Each repository has its own cache sub-directory, consting of the repository ID
which is chosen at init. All cache directories for different repos are
independent of each other.

The cache dir for a repo contains a file named version, which contains a
single ASCII integer line that stands for the current version of the cache. If
a lower version number is found the cache is recreated with the current
version. If a higher version number is found the cache is ignored and left as
is.

Snapshots, Data and Indexes

Snapshot, Data and Index files are cached in the sub-directories snapshots,
data and index, as read from the repository.

Expiry

Whenever a cache directory for a repo is used, that directory’s modification
timestamp is updated to the current time. By looking at the modification
timestamps of the repo cache directories it is easy to decide which directories
are old and haven’t been used in a long time. Those are probably stale and can
be removed.

REST Backend

Restic can interact with HTTP Backend that respects the following REST
API.

The following values are valid for {type}:

	data

	keys

	locks

	snapshots

	index

	config

The API version is selected via the Accept HTTP header in the request. The
following values are defined:

	application/vnd.x.restic.rest.v1 or empty: Select API version 1

	application/vnd.x.restic.rest.v2: Select API version 2

The server will respond with the value of the highest version it supports in
the Content-Type HTTP response header for the HTTP requests which should
return JSON. Any different value for this header means API version 1.

The placeholder {path} in this document is a path to the repository, so
that multiple different repositories can be accessed. The default path is
/. The path must end with a slash.

POST {path}?create=true

This request is used to initially create a new repository. The server
responds with “200 OK” if the repository structure was created
successfully or already exists, otherwise an error is returned.

DELETE {path}

Deletes the repository on the server side. The server responds with “200
OK” if the repository was successfully removed. If this function is not
implemented the server returns “501 Not Implemented”, if this it is
denied by the server it returns “403 Forbidden”.

HEAD {path}/config

Returns “200 OK” if the repository has a configuration, an HTTP error
otherwise.

GET {path}/config

Returns the content of the configuration file if the repository has a
configuration, an HTTP error otherwise.

Response format: binary/octet-stream

POST {path}/config

Returns “200 OK” if the configuration of the request body has been
saved, an HTTP error otherwise.

GET {path}/{type}/

API version 1

Returns a JSON array containing the names of all the blobs stored for a given
type, example:

[
 "245bc4c430d393f74fbe7b13325e30dbde9fb0745e50caad57c446c93d20096b",
 "85b420239efa1132c41cea0065452a40ebc20c6f8e0b132a5b2f5848360973ec",
 "8e2006bb5931a520f3c7009fe278d1ebb87eb72c3ff92a50c30e90f1b8cf3e60",
 "e75c8c407ea31ba399ab4109f28dd18c4c68303d8d86cc275432820c42ce3649"
]

API version 2

Returns a JSON array containing an object for each file of the given type. The
objects have two keys: name for the file name, and size for the size in
bytes.

[
 {
 "name": "245bc4c430d393f74fbe7b13325e30dbde9fb0745e50caad57c446c93d20096b",
 "size": 2341058
 },
 {
 "name": "85b420239efa1132c41cea0065452a40ebc20c6f8e0b132a5b2f5848360973ec",
 "size": 2908900
 },
 {
 "name": "8e2006bb5931a520f3c7009fe278d1ebb87eb72c3ff92a50c30e90f1b8cf3e60",
 "size": 3030712
 },
 {
 "name": "e75c8c407ea31ba399ab4109f28dd18c4c68303d8d86cc275432820c42ce3649",
 "size": 2804
 }
]

HEAD {path}/{type}/{name}

Returns “200 OK” if the blob with the given name and type is stored in
the repository, “404 not found” otherwise. If the blob exists, the HTTP
header Content-Length is set to the file size.

GET {path}/{type}/{name}

Returns the content of the blob with the given name and type if it is
stored in the repository, “404 not found” otherwise.

If the request specifies a partial read with a Range header field, then
the status code of the response is 206 instead of 200 and the response
only contains the specified range.

Response format: binary/octet-stream

POST {path}/{type}/{name}

Saves the content of the request body as a blob with the given name and
type, an HTTP error otherwise.

Request format: binary/octet-stream

DELETE {path}/{type}/{name}

Returns “200 OK” if the blob with the given name and type has been
deleted from the repository, an HTTP error otherwise.

Talks

The following talks will be or have been given about restic:

	2016-01-31: Lightning Talk at the Go Devroom at FOSDEM 2016,
Brussels, Belgium

	2016-01-29: restic - Backups mal
richtig [https://media.ccc.de/v/c4.openchaos.2016.01.restic]:
Public lecture in German at CCC Cologne
e.V. [https://koeln.ccc.de] in Cologne, Germany

	2015-08-23: A Solution to the Backup
Inconvenience [https://programm.froscon.de/2015/events/1515.html]:
Lecture at FROSCON 2015 [https://www.froscon.de] in Bonn, Germany

	2015-02-01: Lightning Talk at FOSDEM
2015 [https://www.youtube.com/watch?v=oM-MfeflUZ8&t=11m40s]: A
short introduction (with slightly outdated command line)

	2015-01-27: Talk about restic at CCC
Aachen [https://videoag.fsmpi.rwth-aachen.de/?view=player&lectureid=4442#content]
(in German)

FAQ

This is the list of Frequently Asked Questions for restic.

restic check reports packs that aren’t referenced in any index, is my repository broken?

When restic check reports that there are pack files in the
repository that are not referenced in any index, that’s (in contrast to
what restic reports at the moment) not a source for concern. The output
looks like this:

$ restic check
Create exclusive lock for repository
Load indexes
Check all packs
pack 819a9a52e4f51230afa89aefbf90df37fb70996337ae57e6f7a822959206a85e: not referenced in any index
pack de299e69fb075354a3775b6b045d152387201f1cdc229c31d1caa34c3b340141: not referenced in any index
Check snapshots, trees and blobs
Fatal: repository contains errors

The message means that there is more data stored in the repo than
strictly necessary. With high probability this is duplicate data. In
order to clean it up, the command restic prune can be used. The
cause of this bug is not yet known.

How can I specify encryption passwords automatically?

When you run restic backup, you need to enter the passphrase on
the console. This is not very convenient for automated backups, so you
can also provide the password through the --password-file option, or one of
the environment variables RESTIC_PASSWORD or RESTIC_PASSWORD_FILE.
A discussion is in progress over implementing unattended backups happens in
#533 [https://github.com/restic/restic/issues/533].

Important

Be careful how you set the environment; using the env
command, a system() call or using inline shell
scripts (e.g. RESTIC_PASSWORD=password restic …)
might expose the credentials in the process list
directly and they will be readable to all users on a
system. Using export in a shell script file should be
safe, however, as the environment of a process is
accessible only to that user [https://security.stackexchange.com/questions/14000/environment-variable-accessibility-in-linux/14009#14009]. Please make sure that
the permissions on the files where the password is
eventually stored are safe (e.g. 0600 and owned by
root).

How to prioritize restic’s IO and CPU time

If you’d like to change the IO priority of restic, run it in the following way

$ ionice -c2 -n0 ./restic -r /media/your/backup/ backup /home

This runs restic in the so-called best effort class (-c2),
with the highest possible priority (-n0).

Take a look at the ionice manpage [https://linux.die.net/man/1/ionice] to learn about the other classes.

To change the CPU scheduling priority to a higher-than-standard
value, use would run:

$ nice --10 ./restic -r /media/your/backup/ backup /home

Again, the nice manpage [https://linux.die.net/man/1/nice] has more information.

You can also combine IO and CPU scheduling priority:

$ ionice -c2 nice -n19 ./restic -r /media/gour/backup/ backup /home

This example puts restic in the IO class 2 (best effort) and tells the CPU
scheduling algorithm to give it the least favorable niceness (19).

The above example makes sure that the system the backup runs on
is not slowed down, which is particularly useful for servers.

Creating new repo on a Synology NAS via sftp fails

Sometimes creating a new restic repository on a Synology NAS via sftp fails
with an error similar to the following:

$ restic init -r sftp:user@nas:/volume1/restic-repo init
create backend at sftp:user@nas:/volume1/restic-repo/ failed:
 mkdirAll(/volume1/restic-repo/index): unable to create directories: [...]

Although you can log into the NAS via SSH and see that the directory structure
is there.

The reason for this behavior is that apparently Synology NAS expose a different
directory structure via sftp, so the path that needs to be specified is
different than the directory structure on the device and maybe even as exposed
via other protocols.

Try removing the /volume1 prefix in your paths. If this does not work, use sftp
and ls to explore the SFTP file system hierarchy on your NAS.

The following may work:

$ restic init -r sftp:user@nas:/restic-repo init

Manual

Usage help

Usage help is available:

$./restic --help
restic is a backup program which allows saving multiple revisions of files and
directories in an encrypted repository stored on different backends.

Usage:
 restic [command]

Available Commands:
 backup Create a new backup of files and/or directories
 cat Print internal objects to stdout
 check Check the repository for errors
 diff Show differences between two snapshots
 dump Print a backed-up file to stdout
 find Find a file or directory
 forget Remove snapshots from the repository
 generate Generate manual pages and auto-completion files (bash, zsh)
 help Help about any command
 init Initialize a new repository
 key Manage keys (passwords)
 list List objects in the repository
 ls List files in a snapshot
 migrate Apply migrations
 mount Mount the repository
 prune Remove unneeded data from the repository
 rebuild-index Build a new index file
 restore Extract the data from a snapshot
 snapshots List all snapshots
 tag Modify tags on snapshots
 unlock Remove locks other processes created
 version Print version information

Flags:
 --cacert stringSlice path to load root certificates from (default: use system certificates)
 --cache-dir string set the cache directory
 --cleanup-cache auto remove old cache directories
 -h, --help help for restic
 --json set output mode to JSON for commands that support it
 --limit-download int limits downloads to a maximum rate in KiB/s. (default: unlimited)
 --limit-upload int limits uploads to a maximum rate in KiB/s. (default: unlimited)
 --no-cache do not use a local cache
 --no-lock do not lock the repo, this allows some operations on read-only repos
 -o, --option key=value set extended option (key=value, can be specified multiple times)
 -p, --password-file string read the repository password from a file (default: $RESTIC_PASSWORD_FILE)
 -q, --quiet do not output comprehensive progress report
 -r, --repo string repository to backup to or restore from (default: $RESTIC_REPOSITORY)
 --tls-client-cert string path to a file containing PEM encoded TLS client certificate and private key
 -v, --verbose count[=-1] be verbose (can be specified multiple times)

Use "restic [command] --help" for more information about a command.

Similar to programs such as git, restic has a number of
sub-commands. You can see these commands in the listing above. Each
sub-command may have own command-line options, and there is a help
option for each command which lists them, e.g. for the backup
command:

$./restic backup --help
The "backup" command creates a new snapshot and saves the files and directories
given as the arguments.

Usage:
 restic backup [flags] FILE/DIR [FILE/DIR] ...

Flags:
 -e, --exclude pattern exclude a pattern (can be specified multiple times)
 --exclude-caches excludes cache directories that are marked with a CACHEDIR.TAG file
 --exclude-file file read exclude patterns from a file (can be specified multiple times)
 --exclude-if-present stringArray takes filename[:header], exclude contents of directories containing filename (except filename itself) if header of that file is as provided (can be specified multiple times)
 --files-from string read the files to backup from file (can be combined with file args)
 -f, --force force re-reading the target files/directories (overrides the "parent" flag)
 -h, --help help for backup
 --hostname hostname set the hostname for the snapshot manually. To prevent an expensive rescan use the "parent" flag
 -x, --one-file-system exclude other file systems
 --parent string use this parent snapshot (default: last snapshot in the repo that has the same target files/directories)
 --stdin read backup from stdin
 --stdin-filename string file name to use when reading from stdin (default "stdin")
 --tag tag add a tag for the new snapshot (can be specified multiple times)
 --time string time of the backup (ex. '2012-11-01 22:08:41') (default: now)
 --with-atime store the atime for all files and directories

Global Flags:
 --cacert stringSlice path to load root certificates from (default: use system certificates)
 --cache-dir string set the cache directory
 --cleanup-cache auto remove old cache directories
 --json set output mode to JSON for commands that support it
 --limit-download int limits downloads to a maximum rate in KiB/s. (default: unlimited)
 --limit-upload int limits uploads to a maximum rate in KiB/s. (default: unlimited)
 --no-cache do not use a local cache
 --no-lock do not lock the repo, this allows some operations on read-only repos
 -o, --option key=value set extended option (key=value, can be specified multiple times)
 -p, --password-file string read the repository password from a file (default: $RESTIC_PASSWORD_FILE)
 -q, --quiet do not output comprehensive progress report
 -r, --repo string repository to backup to or restore from (default: $RESTIC_REPOSITORY)
 --tls-client-cert string path to a file containing PEM encoded TLS client certificate and private key
 -v, --verbose n[=-1] be verbose (specify --verbose multiple times or level n)

Subcommand that support showing progress information such as backup,
check and prune will do so unless the quiet flag -q or
--quiet is set. When running from a non-interactive console progress
reporting will be limited to once every 10 seconds to not fill your
logs. Use backup with the quiet flag -q or --quiet to skip
the initial scan of the source directory, this may shorten the backup
time needed for large directories.

Additionally on Unix systems if restic receives a SIGUSR1 signal the
current progress will be written to the standard output so you can check up
on the status at will.

Manage tags

Managing tags on snapshots is done with the tag command. The
existing set of tags can be replaced completely, tags can be added or
removed. The result is directly visible in the snapshots command.

Let’s say we want to tag snapshot 590c8fc8 with the tags NL and
CH and remove all other tags that may be present, the following
command does that:

$ restic -r /srv/restic-repo tag --set NL --set CH 590c8fc8
create exclusive lock for repository
modified tags on 1 snapshots

Note the snapshot ID has changed, so between each change we need to look
up the new ID of the snapshot. But there is an even better way, the
tag command accepts --tag for a filter, so we can filter
snapshots based on the tag we just added.

So we can add and remove tags incrementally like this:

$ restic -r /srv/restic-repo tag --tag NL --remove CH
create exclusive lock for repository
modified tags on 1 snapshots

$ restic -r /srv/restic-repo tag --tag NL --add UK
create exclusive lock for repository
modified tags on 1 snapshots

$ restic -r /srv/restic-repo tag --tag NL --remove NL
create exclusive lock for repository
modified tags on 1 snapshots

$ restic -r /srv/restic-repo tag --tag NL --add SOMETHING
no snapshots were modified

Under the hood

Browse repository objects

Internally, a repository stores data of several different types
described in the design
documentation [https://github.com/restic/restic/blob/master/doc/Design.rst].
You can list objects such as blobs, packs, index, snapshots, keys or
locks with the following command:

$ restic -r /srv/restic-repo list snapshots
d369ccc7d126594950bf74f0a348d5d98d9e99f3215082eb69bf02dc9b3e464c

The find command searches for a given
pattern [http://golang.org/pkg/path/filepath/#Match] in the
repository.

$ restic -r backup find test.txt
debug log file restic.log
debug enabled
enter password for repository:
found 1 matching entries in snapshot 196bc5760c909a7681647949e80e5448e276521489558525680acf1bd428af36
 -rw-r--r-- 501 20 5 2015-08-26 14:09:57 +0200 CEST path/to/test.txt

The cat command allows you to display the JSON representation of the
objects or their raw content.

$ restic -r /srv/restic-repo cat snapshot d369ccc7d126594950bf74f0a348d5d98d9e99f3215082eb69bf02dc9b3e464c
enter password for repository:
{
 "time": "2015-08-12T12:52:44.091448856+02:00",
 "tree": "05cec17e8d3349f402576d02576a2971fc0d9f9776ce2f441c7010849c4ff5af",
 "paths": [
 "/home/user/work"
],
 "hostname": "kasimir",
 "username": "username",
 "uid": 501,
 "gid": 20
}

Metadata handling

Restic saves and restores most default attributes, including extended attributes like ACLs.
Sparse files are not handled in a special way yet, and aren’t restored.

The following metadata is handled by restic:

	Name

	Type

	Mode

	ModTime

	AccessTime

	ChangeTime

	UID

	GID

	User

	Group

	Inode

	Size

	Links

	LinkTarget

	Device

	Content

	Subtree

	ExtendedAttributes

Scripting

Restic supports the output of some commands in JSON format, the JSON
data can then be processed by other programs (e.g.
jq [https://stedolan.github.io/jq/]). The following example
lists all snapshots as JSON and uses jq to pretty-print the result:

$ restic -r /srv/restic-repo snapshots --json | jq .
[
 {
 "time": "2017-03-11T09:57:43.26630619+01:00",
 "tree": "bf25241679533df554fc0fd0ae6dbb9dcf1859a13f2bc9dd4543c354eff6c464",
 "paths": [
 "/home/work/doc"
],
 "hostname": "kasimir",
 "username": "fd0",
 "uid": 1000,
 "gid": 100,
 "id": "bbeed6d28159aa384d1ccc6fa0b540644b1b9599b162d2972acda86b1b80f89e"
 },
 {
 "time": "2017-03-11T09:58:57.541446938+01:00",
 "tree": "7f8c95d3420baaac28dc51609796ae0e0ecfb4862b609a9f38ffaf7ae2d758da",
 "paths": [
 "/home/user/shared"
],
 "hostname": "kasimir",
 "username": "fd0",
 "uid": 1000,
 "gid": 100,
 "id": "b157d91c16f0ba56801ece3a708dfc53791fe2a97e827090d6ed9a69a6ebdca0"
 }
]

Temporary files

During some operations (e.g. backup and prune) restic uses
temporary files to store data. These files will, by default, be saved to
the system’s temporary directory, on Linux this is usually located in
/tmp/. The environment variable TMPDIR can be used to specify a
different directory, e.g. to use the directory /var/tmp/restic-tmp
instead of the default, set the environment variable like this:

$ export TMPDIR=/var/tmp/restic-tmp
$ restic -r /srv/restic-repo backup ~/work

Caching

Restic keeps a cache with some files from the repository on the local machine.
This allows faster operations, since meta data does not need to be loaded from
a remote repository. The cache is automatically created, usually in an
OS-specific cache folder:

	Linux/other: ~/.cache/restic (or $XDG_CACHE_HOME/restic)

	macOS: ~/Library/Caches/restic

	Windows: %LOCALAPPDATA%/restic

The command line parameter --cache-dir can each be used to override the
default cache location. The parameter --no-cache disables the cache
entirely. In this case, all data is loaded from the repo.

The cache is ephemeral: When a file cannot be read from the cache, it is loaded
from the repository.

Within the cache directory, there’s a sub directory for each repository the
cache was used with. Restic updates the timestamps of a repo directory each
time it is used, so by looking at the timestamps of the sub directories of the
cache directory it can decide which sub directories are old and probably not
needed any more. You can either remove these directories manually, or run a
restic command with the --cleanup-cache flag.

Index

 _images/01_aws_start.png
/ § AWS Management ¢ x \|

<« C () | @ secure | https://eu-central-1.console.aws.amazon.com/console/home?region=eu-central-1 RS- A . I

Resource Groups v %

AWS services Featured next steps
Q [%11 Manage your costs
Get real-time biling alerts based on your cost and

v Recently visited services

§ am B s @® Ec2

usage budgets. Start now.

B oevie am [s

Use AWS Trusted Advisor for secrity, performance,
> Allservices cost and availabilty best practices. Start now
Build a solution What's new?

Get started with simple wizards and automated workflows.
Announcing AWS Batch

@ Launch a virtual machine @ Build a web app @ Deploy a serverless Now generally avallable, AWS Batch enables developers,
With EC2 With Elastic Beanstalk microservice sclentists, and engineers to process large-scale batch jobs with
=1 minute ~6 minutes With Lambda, AP| Gateway case. Leam more
~2 minutes
Fm| Host a static website Cre::e abackendforyour @y Registera domain Announcing Amazon Lightsail
8 mobile app)
With 83, CloudFront, Route 53 With Reute 53 ‘See how this new service allows you to launch and manage your
~5 minutes With Mobie Hup ~3 minutes
e VPS with AWS for a low, predictable price. Leam more
See all
Learn to build Seeall
Leam to deploy your solufions through step-by-step guides, abs, and videos.
AWS Marketplace
Websites DevOps Backup and recovery Discover, procure, and deploy popular softwar products that run

on AWS.

v o .

_images/02_aws_menu.png
TR ———
/ § AWS Management ¢ x \|

<« C () | @ secure | https://eu-central-1.console.aws.amazon.com/console/home?region=eu-central-1 Tt [u]
Resource Groups v %
History [search senvices Gowp AZ
Console Home
1AM @ Compute &, Migration § securiy, Identity & Compliance Mobile Services
s3 EC2 Application Discovery Service 1AM Mobile Hub
£c2 EC2 Container Service Dvs Inspector Cognito
Lightsail & Server Migration Certificate Manager Device Farm
Biling Elastic Beanstalk Snowball Directory Service Mobile Analytics.
Device Farm Lambda WAF & Shield Pinpoint
Baten @2 Developer Tools Compliance Reports
CodeCommit Application Services
) storage CodeBuild & Analytics Step Functions
s3 CodeDeploy Athena SWF
EFS CodePipeline EMR API Gateway
Glacier X-Ray CloudSearch Elastc Transcoder
Storage Gateway Elastiosearch Service
Kinesis)
] Management Tools Data Piciine 3} Messaging
E) Datavase CloudWatch Quicksight & Simple Queue Service
RDS CloudFormation Simple Notifcation Service
DynamoDB CloudTrail SES
ElastiCache Config € Artificial Intelligence
Redshift OpsWorks Lex) ,
Senice Catalog Polly] Business Productivity
£ Networking & Content Delivery Trusted Advisor Rekogniton x::tms
& Managed Services Machine Leaming
VPC Amazon Chime
CloudFront
Internet Of Things
zg:f; z;""m @ WS 0T o D Deskiop & App Streaming
WorkSpaces
AppStream 2.0
&+ Game Development -

_images/03_buckets_list_before.png
/ & 53 Management Cor x \\

<« C () | @ secure | https://console.aws.amazon.com/s3/home?region=eu-central-1

Services v

Resource Groups v %

Welcome to Amazon S3. Create new buckets or select an existing bucket to view anc

‘ Amazon S3

nfigure properties.

Switch to the old console

@ Discover the new console

@ Quick tips

Q Search for buckets

Create bucket

Bucket name.

Delete bucket

Empty bucket

ations.

@ Feedbac

Q@ English

Region
EU (Frankiurt)
EU (Frankiurt)

EU (Frankiurt)

Date created

3 Buckets

1 Regions [

_images/04_bucket_create_start.png
9 53 Management Co: x

@

C { @& secure | https:/console.aws.amazon.com

3/home?region=eu-central-1 ¥

Services v *

Welcome to Amazon S3. Create new buckets or
‘ Amazon S3

Q Search for buckets

Resource Groups Philip Hupp

Name and region

Bucket name 1 Regions &

Bucket name

Copy settings from an existing bucket

Operations 0ln pro 1 Succes:

@ Feedback @ English

nav.xhtml

 Table of Contents

 		
 Restic Documentation

 		
 Introduction

 		
 Installation

 		
 Packages

 		
 Mac OS X

 		
 Arch Linux

 		
 Nix & NixOS

 		
 Debian

 		
 RHEL & CentOS

 		
 Fedora

 		
 Solus

 		
 OpenBSD

 		
 Official Binaries

 		
 Stable Releases

 		
 Unstable Builds

 		
 Windows

 		
 Docker Container

 		
 From Source

 		
 Autocompletion

 		
 Preparing a new repository

 		
 Local

 		
 SFTP

 		
 REST Server

 		
 Amazon S3

 		
 Minio Server

 		
 OpenStack Swift

 		
 Backblaze B2

 		
 Microsoft Azure Blob Storage

 		
 Google Cloud Storage

 		
 Other Services via rclone

 		
 Password prompt on Windows

 		
 Backing up

 		
 Including and Excluding Files

 		
 Comparing Snapshots

 		
 Backing up special items and metadata

 		
 Reading data from stdin

 		
 Tags for backup

 		
 Working with repositories

 		
 Listing all snapshots

 		
 Checking a repo’s integrity and consistency

 		
 Restoring from backup

 		
 Restoring from a snapshot

 		
 Restore using mount

 		
 Printing files to stdout

 		
 Removing backup snapshots

 		
 Remove a single snapshot

 		
 Removing snapshots according to a policy

 		
 Encryption

 		
 Manage repository keys

 		
 Scripting

 		
 Check if a repository is already initialized

 		
 Examples

 		
 Setting up restic with Amazon S3

 		
 Preface

 		
 Prerequisites

 		
 Logging into AWS

 		
 Creating the bucket

 		
 Creating a user

 		
 Initializing the restic repository

 		
 Backing up your system without running restic as root

 		
 Motivation

 		
 Capabilities on Linux

 		
 Full backup without root

 		
 Participating

 		
 Debugging

 		
 Contributing

 		
 Security

 		
 Compatibility

 		
 Building documentation

 		
 References

 		
 Design

 		
 Terminology

 		
 Repository Format

 		
 Pack Format

 		
 Indexing

 		
 Keys, Encryption and MAC

 		
 Snapshots

 		
 Trees and Data

 		
 Locks

 		
 Backups and Deduplication

 		
 Threat Model

 		
 Local Cache

 		
 Versions

 		
 Snapshots, Data and Indexes

 		
 Expiry

 		
 REST Backend

 		
 POST {path}?create=true

 		
 DELETE {path}

 		
 HEAD {path}/config

 		
 GET {path}/config

 		
 POST {path}/config

 		
 GET {path}/{type}/

 		
 HEAD {path}/{type}/{name}

 		
 GET {path}/{type}/{name}

 		
 POST {path}/{type}/{name}

 		
 DELETE {path}/{type}/{name}

 		
 Talks

 		
 FAQ

 		
 restic check reports packs that aren’t referenced in any index, is my repository broken?

 		
 How can I specify encryption passwords automatically?

 		
 How to prioritize restic’s IO and CPU time

 		
 Creating new repo on a Synology NAS via sftp fails

 		
 Manual

 		
 Usage help

 		
 Manage tags

 		
 Under the hood

 		
 Browse repository objects

 		
 Metadata handling

 		
 Scripting

 		
 Temporary files

 		
 Caching

_images/07_iam_start.png
€ 1AM Management C: x

<« C () | @& secure | https://console.aws.amazon.com/iam/home?regio

Search 1AM “«

Dashboard
Groups.

Users

Roles

Policies

Identity providers
Account settings
Credential report

Encryption keys

@ Feedback

@ En

Resource Groups v %

u-central-1#/home

Welcome to Identity and Access Management

1AM users sign-in fink:

ttos:/ [
IAM Resources

Users: 4
Groups: 0

Customer Managed Policies: 3

Security Status

Delete your root access keys
Activate MFA on your root account

Create individual IAM users

Use groups to assign permissions

A Avply an 1AM password policy

Roles: 0
Identity Providers: 0

Customize | Copy Link

2 out of § complete.

v

Feature Spotlight

Introduction to AWS 1AM <
3

< >
Additional Information

1AM documentation
Web Identity Federation Playground
Policy Simulator

Videos, 1AM release history and
additional resources

_images/08_user_list.png
€ 1AM Management C: x

<« C () | @ secure | https:/console.aws.amazon.com/iam/home?region=eu-central-1#/users Tt [u]

Resource Groups v %

Showing 3 results.

Dashboard Q Find users by username or access key

Grou
v User name + Groups Password Last sign-in Access keys Creation time

Users

0 NA 1 active 201 TC+0200 %
Roles

Policies 0 NA 1 active 201 utc+0200 x

Identity providers 0 NA 1 active 201 utc0200 x
Account settings

Credential report

Encryption keys

@ Feedback Q@ En

_images/05_bucket_create_review.png
S3 Management Co' x

¢ - C 0] asecure

‘console.aws.amazon.com/s3/home?region=eu-central-1 23

Services v Resource Groups v %

Welcome to Amazon S3. Create new buckets or

ew console @ Quick tips

‘ Amazon S3

Q Search for buckets

Name and region

Create bucket Bucket name restic-demo Region EU (Frankfurt) 3 1 Regions z

Bucket name

Properties

= Versioning
- Logging
Tagging

Permissions

Users.

Public permissions

@ Feedback @ English

_images/06_buckets_list_after.png
/ & S3 Management Cor x \

<« C () | @ secure | https://console.aws.amazon.com/s3/home?region=eu-central-1 Tt [u]

Services v Resource Groups v %

Welcome to Amazon S3. Create new buckets or select an existing bucket to view and configure properties.

* Amazon S3

Switch to the old console @M Discover the new console @ Quick tips

Q Search for buckets

boves Trm o

Bucket name Region Date created

© restic-demo EU (Frankfurt) Mar 26, 2017 4:34:37 PM
® EU (Frankfurt)

® EU (Frankfurt)

® EU (Frankfurt)

_images/11_policy_start.png
By | (= |[=)][52

€ 1AM Management C x \{

C () | @& secure | https://console.aws.amazon.com/iam/home?region=eu-central-1#/policiessnew?step=edit w| o :

Resource Groups

Create policy o

Editor Review

A policy defines the AWS permissions that can be assigned to a user, group, role, or resource. You can construct a policy using the visual editor or create a policy document using the JSON
editor.

Visual editor | JSON Import managed policy

Use the visual editor to create and edit a policy by choosing services, actions, resources, and request conditions to add permissions to your policy. You can add multiple permission blocks to
define complex permissions or to grant access to more than one service. Learn more

Expand all | Collapse all

~ Selecta service Clone | Remove

Service Choose a service

Documentation

Actions

Resources

Request conditions

© Add additional permissions

[Review policy

@ Feedback @ English (US)

_images/13_policy_review.png
/% 1AM Management C. x \

& C (Y | @ Secure | https://console.aws.amazon.com/iam/home?regiol

Resource Groups

Create policy

Review policy

Before you create this policy, provide the required information and review this policy.

Name* | restic-demo-policy

Maximum 128 characters. Use alphanumeric and '+=

Description

Maximum

‘aracters. Use alphanumeric and '+

Summary

Q Filter

Service v

Allow (1 of 129 services) Show remaining 128

s3 Limited: List, Read, Write

* Required

@ Feedback @ English (US)

@-_ characters.

u-central-1#/policies$new?step=review

Resource

Multiple:

Editor Review

Request condition

None

Cancel | Previous |[SECI 03]

_images/09_user_name.png
/ % 1AM Management - x |

<« C () | @& secure | https://console.aws.amazon.com/iam/home?regio

u-central-1#/users$new?step=details Y [u]

Resource Groups v %

Add user

Permissions Review Complete
Set user details

You can add multiple users at once with the same access type and permissions. Leam more

User name* restic-demo-user

© Add another user

Select AWS access type

Select how these users will access AWS. Access keys and autogenerated passwords are provided in the last step. Learn more

Access type* v Programmatic access

Enables an access key ID and secret access key for the AWS AP, CLI, SDK, and ofher development tools.
AWS Management Console access

Enables a password that allows users to sign-in to the AWS Management Console.

*Required

_images/10_user_pre_policy.png
€ 1AM Management C: x

ETNEEES

<« C () | @ Secure | https://console.aws.amazon.com/iam/home?region=eu-central-1#/users$new?step=permissions&accessKey&userNames=restic-demo-user&perm ¥r [u]
Resource Groups v %
Add user a o
Details Permissions Review Complete
Set permissions for restic-demo-user
A user o group Copy permissions from Attach existng policies
existing user directly
Attach one or more existing policies directly to the user or create a new policy. Leam more
Create policy | & Refresh
Filter: Policy type v | Q Search Showing 255 results.
Policy name ~ Type Attachments v Description
» AdministratorAccess Job function 0 Provides full access to AWS services and resources.
» AmazonAPIGatewayAdministrator AWS managed 0 Provides full access to createfeditidelete APIs in Amazon API Gateway via the AWS ...
» AmazonAPIGatewaylnvokeFullAccess AWS managed 0 Provides full access to invoke APIs in Amazon AP| Gateway.
» W AmazonAPIGatewayPushToCloudWa... AWS managed 0 Allows API Gateway to push logs to user's account.
» AmazonAppStreamFullAccess AWS managed 0 Provides full access to Amazon AppStream via the AWS Management Console. .
@ Feedback Q@ En

_images/14_user_attach_policy.png
[ETIEEES

€ 1AM Management C: x

<« C () | @& secure | https://console.aws.amazon.com/iam/home?regio estic-demo-user&perm ¢ [u]

u-central-1#/usersgnew?step=permissions&accesskey&userName:

Resource Groups v %

Add user o o

Details Permissions Review Complete
Set permissions for restic-demo-user
Copy permissions from Attach existing policies

Add userto group existing user directly
Attach one or more existing policies directly to the user or create a new policy. Leamn more

Create policy | & Refresh

Filter: Policy type v | Q restic-demo Showing 1 result

Policy name v Type Attachments v Description
v restic-demo-policy Customer managed 0 Allow access to the restic-demo bucket.

@ Feedback Q@ En

_images/15_user_review.png
[ETIEEES

/ % 1AM Management - x |

& © C (| @ Secure | https://console.aws.amazon.com/iam/home?region=eu-central-1#/users$new?step=reviewsaccesskey&userNames=restic-demo-user&permissior ¥ | && @

Service: Resource Groups v %

Add user o o o

Details Permissions Complete

Review

Review your choices. After you create the user, you can view and download the autogenerated password and access key.
User details

Username restic-demo-user

AWS access type Programmatic access - with an access key

Permissions summary
The following policies wil be attached to the user shown above.

Type Name

Managed policy restic-demo-policy

Cancel | Previous | [EZEICIEN

@ Feedback Q@ En

_images/16_user_created.png
[ETIEEES

@

€ 1AM Management C: x

C () | @& secure | https://console.aws.amazon.com/iam/home?regio

Resource Groups v %

u-central-1#/usersgnew?step=final&accessKey&userName:

estic-demo-user&permissionTy ¥ o

Add user

Details Permissions

Review Complete

© Success

You successfully created the users shown below. You can view and download user security credentials. You can also email users instructions for signing in to the AWS Management

Console. This is the last time these credentials wil be available to download. However, you can create new credentials at any time.

Users with AWS Management Console access can sign-n at: htps:/ NN signin.aws.amazon.com/console

& Download .csv

User Access key ID

restic-demo-user AKIAJAJSLTZCAZASRISQ

[

@ En

@ Feedback

Secret access key

LaJiZPoVvGbXsaD2LsxvJZFITLR4FRTOTK
49DQq Hide

Close

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/logo.png

_static/minus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/plus.png

