
restic
Release 0.8.3

May 06, 2018

Contents

1 Introduction 1

2 Installation 3
2.1 Packages . 3
2.2 Official Binaries . 4
2.3 Docker Container . 5
2.4 From Source . 5
2.5 Autocompletion . 6

3 Preparing a new repository 7
3.1 Local . 7
3.2 SFTP . 7
3.3 REST Server . 8
3.4 Amazon S3 . 9
3.5 Minio Server . 9
3.6 OpenStack Swift . 10
3.7 Backblaze B2 . 11
3.8 Microsoft Azure Blob Storage . 11
3.9 Google Cloud Storage . 11
3.10 Other Services via rclone . 12
3.11 Password prompt on Windows . 13

4 Backing up 15
4.1 Including and Excluding Files . 16
4.2 Comparing Snapshots . 18
4.3 Backing up special items and metadata . 18
4.4 Reading data from stdin . 18
4.5 Tags for backup . 19

5 Working with repositories 21
5.1 Listing all snapshots . 21
5.2 Checking a repo’s integrity and consistency . 22

6 Restoring from backup 23
6.1 Restoring from a snapshot . 23
6.2 Restore using mount . 24
6.3 Printing files to stdout . 24

i

7 Removing backup snapshots 25
7.1 Remove a single snapshot . 25
7.2 Removing snapshots according to a policy . 27

8 Encryption 29
8.1 Manage repository keys . 29

9 Scripting 31
9.1 Check if a repository is already initialized . 31

10 Examples 33
10.1 Setting up restic with Amazon S3 . 33
10.2 Backing up your system without running restic as root . 47

11 Participating 49
11.1 Debugging . 49
11.2 Contributing . 50
11.3 Security . 50
11.4 Compatibility . 50
11.5 Building documentation . 50

12 References 51
12.1 Design . 51
12.2 Local Cache . 59
12.3 REST Backend . 60

13 Talks 63

14 FAQ 65
14.1 restic check reports packs that aren’t referenced in any index, is my repository broken? 65
14.2 How can I specify encryption passwords automatically? . 65
14.3 How to prioritize restic’s IO and CPU time . 66
14.4 Creating new repo on a Synology NAS via sftp fails . 66

15 Manual 67
15.1 Usage help . 67
15.2 Manage tags . 69
15.3 Under the hood . 70
15.4 Scripting . 71
15.5 Temporary files . 72
15.6 Caching . 72

ii

CHAPTER 1

Introduction

Restic is a fast and secure backup program. In the following sections, we will present typical workflows, starting with
installing, preparing a new repository, and making the first backup.

1

restic, Release 0.8.3

2 Chapter 1. Introduction

CHAPTER 2

Installation

2.1 Packages

Note that if at any point the package you’re trying to use is outdated, you always have the option to use an official
binary from the restic project.

These are up to date binaries, built in a reproducible and verifiable way, that you can download and run without having
to do additional installation work.

Please see the Official Binaries section below for various downloads.

2.1.1 Mac OS X

If you are using Mac OS X, you can install restic using the homebrew package manager:

$ brew install restic

2.1.2 Arch Linux

On Arch Linux, there is a package called restic-git which can be installed from AUR, e.g. with pacaur:

$ pacaur -S restic-git

2.1.3 Nix & NixOS

If you are using Nix or NixOS there is a package available named restic. It can be installed uisng nix-env:

$ nix-env --install restic

3

http://brew.sh/
https://www.archlinux.org/
https://nixos.org/nix/
https://nixos.org/

restic, Release 0.8.3

2.1.4 Debian

On Debian, there’s a package called restic which can be installed from the official repos, e.g. with apt-get:

$ apt-get install restic

Warning: Please be aware that, at the time of writing, Debian stable has restic version 0.3.3 which is very
old. The testing and unstable branches have recent versions of restic.

2.1.5 RHEL & CentOS

restic can be installed via copr repository.

$ yum install yum-plugin-copr
$ yum copr enable copart/restic
$ yum install restic

2.1.6 Fedora

restic can be installed via copr repository.

$ dnf install dnf-plugin-core
$ dnf copr enable copart/restic
$ dnf install restic

2.1.7 Solus

restic can be installed from the official repo of Solus via the eopkg package manager:

$ eopkg install restic

2.1.8 OpenBSD

On OpenBSD 6.3 and greater, you can install restic using pkg_add:

pkg_add restic

2.2 Official Binaries

2.2.1 Stable Releases

You can download the latest stable release versions of restic from the restic release page. These builds are considered
stable and releases are made regularly in a controlled manner.

There’s both pre-compiled binaries for different platforms as well as the source code available for download. Just
download and run the one matching your system.

4 Chapter 2. Installation

https://github.com/restic/restic/releases/latest

restic, Release 0.8.3

2.2.2 Unstable Builds

Another option is to use the latest builds for the master branch, available on the restic beta download site. These too
are pre-compiled and ready to run, and a new version is built every time a push is made to the master branch.

2.2.3 Windows

On Windows, put the restic.exe into %SystemRoot%System32 to use restic in scripts without the need for absolute
paths to the binary. This requires Admin rights.

2.3 Docker Container

We’re maintaining a bare docker container with just a few files and the restic binary, you can get it with docker pull
like this:

$ docker pull restic/restic

Note:

Another docker container which offers more configuration options is
available as a contribution (Thank you!). You can find it at
https://github.com/Lobaro/restic-backup-docker

2.4 From Source

restic is written in the Go programming language and you need at least Go version 1.8. Building restic may also work
with older versions of Go, but that’s not supported. See the Getting started guide of the Go project for instructions
how to install Go.

In order to build restic from source, execute the following steps:

$ git clone https://github.com/restic/restic
[...]

$ cd restic

$ go run build.go

You can easily cross-compile restic for all supported platforms, just supply the target OS and platform via the
command-line options like this (for Windows and FreeBSD respectively):

$ go run build.go --goos windows --goarch amd64

$ go run build.go --goos freebsd --goarch 386

$ go run build.go --goos linux --goarch arm --goarm 6

The resulting binary is statically linked and does not require any libraries.

At the moment, the only tested compiler for restic is the official Go compiler. Building restic with gccgo may work,
but is not supported.

2.3. Docker Container 5

https://beta.restic.net/?sort=time&order=desc
https://github.com/Lobaro/restic-backup-docker
https://golang.org/doc/install

restic, Release 0.8.3

2.5 Autocompletion

Restic can write out man pages and bash/zsh compatible autocompletion scripts:

$./restic generate --help

The "generate" command writes automatically generated files like the man pages
and the auto-completion files for bash and zsh).

Usage:
restic generate [command] [flags]

Flags:
--bash-completion file write bash completion file

-h, --help help for generate
--man directory write man pages to directory
--zsh-completion file write zsh completion file

Example for using sudo to write a bash completion script directly to the system-wide location:

$ sudo ./restic generate --bash-completion /etc/bash_completion.d/restic
writing bash completion file to /etc/bash_completion.d/restic

6 Chapter 2. Installation

CHAPTER 3

Preparing a new repository

The place where your backups will be saved at is called a “repository”. This chapter explains how to create (“init”)
such a repository. The repository can be stored locally, or on some remote server or service. We’ll first cover using
a local repository, the remaining sections of this chapter cover all the other options. You can skip to the next chapter
once you’ve read the relevant section here.

3.1 Local

In order to create a repository at /srv/restic-repo, run the following command and enter the same password
twice:

$ restic init --repo /srv/restic-repo
enter password for new backend:
enter password again:
created restic backend 085b3c76b9 at /srv/restic-repo
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

Warning: Remembering your password is important! If you lose it, you won’t be able to access data stored in the
repository.

For automated backups, restic accepts the repository location in the environment variable RESTIC_REPOSITORY.
The password can be read from a file (via the option --password-file or the environment variable
RESTIC_PASSWORD_FILE) or the environment variable RESTIC_PASSWORD.

3.2 SFTP

In order to backup data via SFTP, you must first set up a server with SSH and let it know your public key. Passwordless
login is really important since restic fails to connect to the repository if the server prompts for credentials.

7

restic, Release 0.8.3

Once the server is configured, the setup of the SFTP repository can simply be achieved by changing the URL scheme
in the init command:

$ restic -r sftp:user@host:/srv/restic-repo init
enter password for new backend:
enter password again:
created restic backend f1c6108821 at sftp:user@host:/srv/restic-repo
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

You can also specify a relative (read: no slash (/) character at the beginning) directory, in this case the dir is relative
to the remote user’s home directory.

Note: Please be aware that sftp servers do not expand the tilde character (~) normally used as an alias for a user’s
home directory. If you want to specify a path relative to the user’s home directory, pass a relative path to the sftp
backend.

The backend config string does not allow specifying a port. If you need to contact an sftp server on a different port,
you can create an entry in the ssh file, usually located in your user’s home directory at ~/.ssh/config or in
/etc/ssh/ssh_config:

Host foo
User bar
Port 2222

Then use the specified host name foo normally (you don’t need to specify the user name in this case):

$ restic -r sftp:foo:/srv/restic-repo init

You can also add an entry with a special host name which does not exist, just for use with restic, and use the Hostname
option to set the real host name:

Host restic-backup-host
Hostname foo
User bar
Port 2222

Then use it in the backend specification:

$ restic -r sftp:restic-backup-host:/srv/restic-repo init

Last, if you’d like to use an entirely different program to create the SFTP connection, you can specify the command
to be run with the option -o sftp.command="foobar".

3.3 REST Server

In order to backup data to the remote server via HTTP or HTTPS protocol, you must first set up a remote REST server
instance. Once the server is configured, accessing it is achieved by changing the URL scheme like this:

$ restic -r rest:http://host:8000/

Depending on your REST server setup, you can use HTTPS protocol, password protection, or multiple repositories.
Or any combination of those features, as you see fit. TCP/IP port is also configurable. Here are some more examples:

8 Chapter 3. Preparing a new repository

https://github.com/restic/rest-server

restic, Release 0.8.3

$ restic -r rest:https://host:8000/
$ restic -r rest:https://user:pass@host:8000/
$ restic -r rest:https://user:pass@host:8000/my_backup_repo/

If you use TLS, restic will use the system’s CA certificates to verify the server certificate. When the verification fails,
restic refuses to proceed and exits with an error. If you have your own self-signed certificate, or a custom CA certificate
should be used for verification, you can pass restic the certificate filename via the --cacert option.

REST server uses exactly the same directory structure as local backend, so you should be able to access it both locally
and via HTTP, even simultaneously.

3.4 Amazon S3

Restic can backup data to any Amazon S3 bucket. However, in this case, changing the URL scheme is not enough since
Amazon uses special security credentials to sign HTTP requests. By consequence, you must first setup the following
environment variables with the credentials you obtained while creating the bucket.

$ export AWS_ACCESS_KEY_ID=<MY_ACCESS_KEY>
$ export AWS_SECRET_ACCESS_KEY=<MY_SECRET_ACCESS_KEY>

You can then easily initialize a repository that uses your Amazon S3 as a backend, if the bucket does not exist yet it
will be created in the default location:

$ restic -r s3:s3.amazonaws.com/bucket_name init
enter password for new backend:
enter password again:
created restic backend eefee03bbd at s3:s3.amazonaws.com/bucket_name
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

It is not possible at the moment to have restic create a new bucket in a different location, so you need to create it using
a different program. Afterwards, the S3 server (s3.amazonaws.com) will redirect restic to the correct endpoint.

Until version 0.8.0, restic used a default prefix of restic, so the files in the bucket were placed in a directory named
restic. If you want to access a repository created with an older version of restic, specify the path after the bucket
name like this:

$ restic -r s3:s3.amazonaws.com/bucket_name/restic [...]

For an S3-compatible server that is not Amazon (like Minio, see below), or is only available via HTTP, you can specify
the URL to the server like this: s3:http://server:port/bucket_name.

3.5 Minio Server

Minio is an Open Source Object Storage, written in Go and compatible with AWS S3 API.

• Download and Install Minio Server.

• You can also refer to https://docs.minio.io for step by step guidance on installation and getting started on Minio
Client and Minio Server.

You must first setup the following environment variables with the credentials of your running Minio Server.

3.4. Amazon S3 9

https://www.minio.io
https://minio.io/downloads/#minio-server
https://docs.minio.io

restic, Release 0.8.3

$ export AWS_ACCESS_KEY_ID=<YOUR-MINIO-ACCESS-KEY-ID>
$ export AWS_SECRET_ACCESS_KEY= <YOUR-MINIO-SECRET-ACCESS-KEY>

Now you can easily initialize restic to use Minio server as backend with this command.

$./restic -r s3:http://localhost:9000/restic init
enter password for new backend:
enter password again:
created restic backend 6ad29560f5 at s3:http://localhost:9000/restic1
Please note that knowledge of your password is required to access
the repository. Losing your password means that your data is irrecoverably lost.

3.6 OpenStack Swift

Restic can backup data to an OpenStack Swift container. Because Swift supports various authentication methods, cre-
dentials are passed through environment variables. In order to help integration with existing OpenStack installations,
the naming convention of those variables follows official python swift client:

For keystone v1 authentication
$ export ST_AUTH=<MY_AUTH_URL>
$ export ST_USER=<MY_USER_NAME>
$ export ST_KEY=<MY_USER_PASSWORD>

For keystone v2 authentication (some variables are optional)
$ export OS_AUTH_URL=<MY_AUTH_URL>
$ export OS_REGION_NAME=<MY_REGION_NAME>
$ export OS_USERNAME=<MY_USERNAME>
$ export OS_PASSWORD=<MY_PASSWORD>
$ export OS_TENANT_ID=<MY_TENANT_ID>
$ export OS_TENANT_NAME=<MY_TENANT_NAME>

For keystone v3 authentication (some variables are optional)
$ export OS_AUTH_URL=<MY_AUTH_URL>
$ export OS_REGION_NAME=<MY_REGION_NAME>
$ export OS_USERNAME=<MY_USERNAME>
$ export OS_PASSWORD=<MY_PASSWORD>
$ export OS_USER_DOMAIN_NAME=<MY_DOMAIN_NAME>
$ export OS_PROJECT_NAME=<MY_PROJECT_NAME>
$ export OS_PROJECT_DOMAIN_NAME=<MY_PROJECT_DOMAIN_NAME>

For authentication based on tokens
$ export OS_STORAGE_URL=<MY_STORAGE_URL>
$ export OS_AUTH_TOKEN=<MY_AUTH_TOKEN>

Restic should be compatible with OpenStack RC file in most cases.

Once environment variables are set up, a new repository can be created. The name of swift container and optional path
can be specified. If the container does not exist, it will be created automatically:

$ restic -r swift:container_name:/path init # path is optional
enter password for new backend:
enter password again:
created restic backend eefee03bbd at swift:container_name:/path
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

10 Chapter 3. Preparing a new repository

https://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html

restic, Release 0.8.3

The policy of new container created by restic can be changed using environment variable:

$ export SWIFT_DEFAULT_CONTAINER_POLICY=<MY_CONTAINER_POLICY>

3.7 Backblaze B2

Restic can backup data to any Backblaze B2 bucket. You need to first setup the following environment variables with
the credentials you obtained when signed into your B2 account:

$ export B2_ACCOUNT_ID=<MY_ACCOUNT_ID>
$ export B2_ACCOUNT_KEY=<MY_SECRET_ACCOUNT_KEY>

You can then easily initialize a repository stored at Backblaze B2. If the bucket does not exist yet, it will be created:

$ restic -r b2:bucketname:path/to/repo init
enter password for new backend:
enter password again:
created restic backend eefee03bbd at b2:bucketname:path/to/repo
Please note that knowledge of your password is required to access the repository.
Losing your password means that your data is irrecoverably lost.

The number of concurrent connections to the B2 service can be set with the -o b2.connections=10. By default,
at most five parallel connections are established.

3.8 Microsoft Azure Blob Storage

You can also store backups on Microsoft Azure Blob Storage. Export the Azure account name and key as follows:

$ export AZURE_ACCOUNT_NAME=<ACCOUNT_NAME>
$ export AZURE_ACCOUNT_KEY=<SECRET_KEY>

Afterwards you can initialize a repository in a container called foo in the root path like this:

$ restic -r azure:foo:/ init
enter password for new backend:
enter password again:

created restic backend a934bac191 at azure:foo:/
[...]

The number of concurrent connections to the Azure Blob Storage service can be set with the -o azure.
connections=10. By default, at most five parallel connections are established.

3.9 Google Cloud Storage

Restic supports Google Cloud Storage as a backend.

Restic connects to Google Cloud Storage via a service account.

For normal restic operation, the service account must have the storage.objects.{create,delete,get,
list} permissions for the bucket. These are included in the “Storage Object Admin” role. restic init can

3.7. Backblaze B2 11

https://cloud.google.com/storage/docs/authentication#service_accounts

restic, Release 0.8.3

create the repository bucket. Doing so requires the storage.buckets.create permission (“Storage Admin”
role). If the bucket already exists, that permission is unnecessary.

To use the Google Cloud Storage backend, first create a service account key and download the JSON credentials file.
Second, find the Google Project ID that you can see in the Google Cloud Platform console at the “Storage/Settings”
menu. Export the path to the JSON key file and the project ID as follows:

$ export GOOGLE_PROJECT_ID=123123123123
$ export GOOGLE_APPLICATION_CREDENTIALS=$HOME/.config/gs-secret-restic-key.json

Restic uses Google’s client library to generate [default authentication material](https://developers.google.com/identity/
protocols/application-default-credentials), which means if you’re running in Google Container Engine or are otherwise
located on an instance with default service accounts then these should work out the box.

Once authenticated, you can use the gs: backend type to create a new repository in the bucket foo at the root path:

$ restic -r gs:foo:/ init
enter password for new backend:
enter password again:

created restic backend bde47d6254 at gs:foo2/
[...]

The number of concurrent connections to the GCS service can be set with the -o gs.connections=10. By
default, at most five parallel connections are established.

3.10 Other Services via rclone

The program rclone can be used to access many other different services and store data there. First, you need
to install and configure rclone. The general backend specification format is rclone:<remote>:<path>, the
<remote>:<path> component will be directly passed to rclone. When you configure a remote named foo, you
can then call restic as follows to initiate a new repository in the path bar in the repo:

$ restic -r rclone:foo:bar init

Restic takes care of starting and stopping rclone.

As a more concrete example, suppose you have configured a remote named b2prod for Backblaze B2 with rclone,
with a bucket called yggdrasil. You can then use rclone to list files in the bucket like this:

$ rclone ls b2prod:yggdrasil

In order to create a new repository in the root directory of the bucket, call restic like this:

$ restic -r rclone:b2prod:yggdrasil init

If you want to use the path foo/bar/baz in the bucket instead, pass this to restic:

$ restic -r rclone:b2prod:yggdrasil/foo/bar/baz init

Listing the files of an empty repository directly with rclone should return a listing similar to the following:

$ rclone ls b2prod:yggdrasil/foo/bar/baz
155 bar/baz/config
448 bar/baz/keys/4bf9c78049de689d73a56ed0546f83b8416795295cda12ec7fb9465af3900b44

12 Chapter 3. Preparing a new repository

https://cloud.google.com/storage/docs/authentication#generating-a-private-key
https://developers.google.com/identity/protocols/application-default-credentials
https://developers.google.com/identity/protocols/application-default-credentials
https://rclone.org/
https://rclone.org/docs/

restic, Release 0.8.3

Rclone can be configured with environment variables, so for instance configuring a bandwidth limit for rclone can be
achieved by setting the RCLONE_BWLIMIT environment variable:

$ export RCLONE_BWLIMIT=1M

For debugging rclone, you can set the environment variable RCLONE_VERBOSE=2.

The rclone backend has two additional options:

• -o rclone.program specifies the path to rclone, the default value is just rclone

• -o rclone.args allows setting the arguments passed to rclone, by default this is serve restic
--stdio --b2-hard-delete --drive-use-trash=false

The reason for the two last parameters (--b2-hard-delete and --drive-use-trash=false) can be found
in the corresponding GitHub issue #1657.

In order to start rclone, restic will build a list of arguments by joining the following lists (in this order): rclone.
program, rclone.args and as the last parameter the value that follows the rclone: prefix of the repository
specification.

So, calling restic like this

$ restic -o rclone.program="/path/to/rclone" \
-o rclone.args="serve restic --stdio --bwlimit 1M --b2-hard-delete --verbose" \
-r rclone:b2:foo/bar

runs rclone as follows:

$ /path/to/rclone serve restic --stdio --bwlimit 1M --b2-hard-delete --verbose b2:foo/
→˓bar

Manually setting rclone.program also allows running a remote instance of rclone e.g. via SSH on a server, for
example:

$ restic -o rclone.program="ssh user@host rclone" -r rclone:b2:foo/bar

The rclone command may also be hard-coded in the SSH configuration or the user’s public key, in this case it may
be sufficient to just start the SSH connection (and it’s irrelevant what’s passed after rclone: in the repository
specification):

$ restic -o rclone.program="ssh user@host" -r rclone:x

3.11 Password prompt on Windows

At the moment, restic only supports the default Windows console interaction. If you use emulation environments like
MSYS2 or Cygwin, which use terminals like Mintty or rxvt, you may get a password error:

You can workaround this by using a special tool called winpty (look here and here for detail information). On
MSYS2, you can install winpty as follows:

$ pacman -S winpty
$ winpty restic -r /srv/restic-repo init

3.11. Password prompt on Windows 13

https://rclone.org/docs/#environment-variables
https://github.com/restic/restic/pull/1657#issuecomment-377707486
https://msys2.github.io/
https://www.cygwin.com/
https://sourceforge.net/p/msys2/wiki/Porting/
https://github.com/rprichard/winpty

restic, Release 0.8.3

14 Chapter 3. Preparing a new repository

CHAPTER 4

Backing up

Now we’re ready to backup some data. The contents of a directory at a specific point in time is called a “snapshot” in
restic. Run the following command and enter the repository password you chose above again:

$ restic -r /srv/restic-repo --verbose backup ~/work
open repository
enter password for repository:
password is correct
lock repository
load index files
start scan
start backup
scan finished in 1.837s
processed 1.720 GiB in 0:12
Files: 5307 new, 0 changed, 0 unmodified
Dirs: 1867 new, 0 changed, 0 unmodified
Added: 1.700 GiB
snapshot 40dc1520 saved

As you can see, restic created a backup of the directory and was pretty fast! The specific snapshot just created is
identified by a sequence of hexadecimal characters, 40dc1520 in this case.

If you don’t pass the --verbose option, restic will print less data (but you’ll still get a nice live status display).

If you run the command again, restic will create another snapshot of your data, but this time it’s even faster. This is
de-duplication at work!

$ restic -r /srv/restic-repo backup --verbose ~/work
open repository
enter password for repository:
password is correct
lock repository
load index files
using parent snapshot d875ae93
start scan
start backup

(continues on next page)

15

restic, Release 0.8.3

(continued from previous page)

scan finished in 1.881s
processed 1.720 GiB in 0:03
Files: 0 new, 0 changed, 5307 unmodified
Dirs: 0 new, 0 changed, 1867 unmodified
Added: 0 B
snapshot 79766175 saved

You can even backup individual files in the same repository (not passing --verbose means less output):

$ restic -r /srv/restic-repo backup ~/work.txt
enter password for repository:
password is correct
snapshot 249d0210 saved

If you’re interested in what restic does, pass --verbose twice (or --verbose 2) to display detailed information
about each file and directory restic encounters:

$ echo 'more data foo bar' >> ~/work.txt

$ restic -r /srv/restic-repo backup --verbose --verbose ~/work.txt
open repository
enter password for repository:
password is correct
lock repository
load index files
using parent snapshot f3f8d56b
start scan
start backup
scan finished in 2.115s
modified /home/user/work.txt, saved in 0.007s (22 B added)
modified /home/user/, saved in 0.008s (0 B added, 378 B metadata)
modified /home/, saved in 0.009s (0 B added, 375 B metadata)
processed 22 B in 0:02
Files: 0 new, 1 changed, 0 unmodified
Dirs: 0 new, 2 changed, 0 unmodified
Data Blobs: 1 new
Tree Blobs: 3 new
Added: 1.116 KiB
snapshot 8dc503fc saved

In fact several hosts may use the same repository to backup directories and files leading to a greater de-duplication.

Please be aware that when you backup different directories (or the directories to be saved have a variable name
component like a time/date), restic always needs to read all files and only afterwards can compute which parts of the
files need to be saved. When you backup the same directory again (maybe with new or changed files) restic will find
the old snapshot in the repo and by default only reads those files that are new or have been modified since the last
snapshot. This is decided based on the modify date of the file in the file system.

Now is a good time to run restic check to verify that all data is properly stored in the repository. You should run
this command regularly to make sure the internal structure of the repository is free of errors.

4.1 Including and Excluding Files

You can exclude folders and files by specifying exclude patterns, currently the exclude options are:

• --exclude Specified one or more times to exclude one or more items

16 Chapter 4. Backing up

restic, Release 0.8.3

• --exclude-caches Specified once to exclude folders containing a special file

• --exclude-file Specified one or more times to exclude items listed in a given file

• --exclude-if-present Specified one or more times to exclude a folders content if it contains a given file
(optionally having a given header)

Let’s say we have a file called excludes.txt with the following content:

:: # exclude go-files .go # exclude foo/x/y/z/bar foo/x/bar foo/bar foo/*/bar

It can be used like this:

$ restic -r /srv/restic-repo backup ~/work --exclude="*.c" --exclude-file=excludes.txt

This instruct restic to exclude files matching the following criteria:

• All files matching *.go (second line in excludes.txt)

• All files and sub-directories named bar which reside somewhere below a directory called foo (fourth line in
excludes.txt)

• All files matching *.c (parameter --exclude)

Please see restic help backup for more specific information about each exclude option.

Patterns use filepath.Glob internally, see filepath.Match for syntax. Patterns are tested against the full path of a file/dir
to be saved, even if restic is passed a relative path to save. Environment-variables in exclude-files are expanded with
os.ExpandEnv.

Patterns need to match on complete path components. For example, the pattern foo:

• matches /dir1/foo/dir2/file and /dir/foo

• does not match /dir/foobar or barfoo

A trailing / is ignored, a leading / anchors the pattern at the root directory. This means, /bin matches /bin/bash
but does not match /usr/bin/restic.

Regular wildcards cannot be used to match over the directory separator /. For example: b*ashmatches /bin/bash
but does not match /bin/ash.

For this, the special wildcard ** can be used to match arbitrary sub-directories: The pattern foo/**/bar matches:

• /dir1/foo/dir2/bar/file

• /foo/bar/file

• /tmp/foo/bar

By specifying the option --one-file-system you can instruct restic to only backup files from the file systems
the initially specified files or directories reside on. For example, calling restic like this won’t backup /sys or /dev
on a Linux system:

$ restic -r /srv/restic-repo backup --one-file-system /

By using the --files-from option you can read the files you want to backup from a file. This is especially useful
if a lot of files have to be backed up that are not in the same folder or are maybe pre-filtered by other software.

For example maybe you want to backup files which have a name that matches a certain pattern:

$ find /tmp/somefiles | grep 'PATTERN' > /tmp/files_to_backup

You can then use restic to backup the filtered files:

4.1. Including and Excluding Files 17

https://golang.org/pkg/path/filepath/#Glob
https://golang.org/pkg/path/filepath/#Match
https://golang.org/pkg/os/#ExpandEnv

restic, Release 0.8.3

$ restic -r /srv/restic-repo backup --files-from /tmp/files_to_backup

Incidentally you can also combine --files-from with the normal files args:

$ restic -r /srv/restic-repo backup --files-from /tmp/files_to_backup /tmp/some_
→˓additional_file

Paths in the listing file can be absolute or relative.

4.2 Comparing Snapshots

Restic has a diff command which shows the difference between two snapshots and displays a small statistic, just pass
the command two snapshot IDs:

$ restic -r /srv/restic-repo diff 5845b002 2ab627a6
password is correct
comparing snapshot ea657ce5 to 2ab627a6:

C /restic/cmd_diff.go
+ /restic/foo
C /restic/restic

Files: 0 new, 0 removed, 2 changed
Dirs: 1 new, 0 removed
Others: 0 new, 0 removed
Data Blobs: 14 new, 15 removed
Tree Blobs: 2 new, 1 removed

Added: 16.403 MiB
Removed: 16.402 MiB

4.3 Backing up special items and metadata

Symlinks are archived as symlinks, restic does not follow them. When you restore, you get the same symlink
again, with the same link target and the same timestamps.

If there is a bind-mount below a directory that is to be saved, restic descends into it.

Device files are saved and restored as device files. This means that e.g. /dev/sda is archived as a block device
file and restored as such. This also means that the content of the corresponding disk is not read, at least not from the
device file.

By default, restic does not save the access time (atime) for any files or other items, since it is not possible to reliably
disable updating the access time by restic itself. This means that for each new backup a lot of metadata is written, and
the next backup needs to write new metadata again. If you really want to save the access time for files and directories,
you can pass the --with-atime option to the backup command.

4.4 Reading data from stdin

Sometimes it can be nice to directly save the output of a program, e.g. mysqldump so that the SQL can later be
restored. Restic supports this mode of operation, just supply the option --stdin to the backup command like this:

18 Chapter 4. Backing up

restic, Release 0.8.3

$ mysqldump [...] | restic -r /srv/restic-repo backup --stdin

This creates a new snapshot of the output of mysqldump. You can then use e.g. the fuse mounting option (see below)
to mount the repository and read the file.

By default, the file name stdin is used, a different name can be specified with --stdin-filename, e.g. like this:

$ mysqldump [...] | restic -r /srv/restic-repo backup --stdin --stdin-filename
→˓production.sql

4.5 Tags for backup

Snapshots can have one or more tags, short strings which add identifying information. Just specify the tags for a
snapshot one by one with --tag:

$ restic -r /srv/restic-repo backup --tag projectX --tag foo --tag bar ~/work
[...]

The tags can later be used to keep (or forget) snapshots with the forget command. The command tag can be used
to modify tags on an existing snapshot.

4.5. Tags for backup 19

restic, Release 0.8.3

20 Chapter 4. Backing up

CHAPTER 5

Working with repositories

5.1 Listing all snapshots

Now, you can list all the snapshots stored in the repository:

$ restic -r /srv/restic-repo snapshots
enter password for repository:
ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
bdbd3439 2015-05-08 21:45:17 luigi /home/art
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

You can filter the listing by directory path:

$ restic -r /srv/restic-repo snapshots --path="/srv"
enter password for repository:
ID Date Host Tags Directory
--
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

Or filter by host:

$ restic -r /srv/restic-repo snapshots --host luigi
enter password for repository:
ID Date Host Tags Directory
--
bdbd3439 2015-05-08 21:45:17 luigi /home/art
9f0bc19e 2015-05-08 21:46:11 luigi /srv

Combining filters is also possible.

21

restic, Release 0.8.3

5.2 Checking a repo’s integrity and consistency

Imagine your repository is saved on a server that has a faulty hard drive, or even worse, attackers get privileged access
and modify your backup with the intention to make you restore malicious data:

$ sudo echo "boom" >> backup/index/
→˓d795ffa99a8ab8f8e42cec1f814df4e48b8f49129360fb57613df93739faee97

In order to detect these things, it is a good idea to regularly use the check command to test whether everything is
alright, your precious backup data is consistent and the integrity is unharmed:

$ restic -r /srv/restic-repo check
Load indexes
ciphertext verification failed

Trying to restore a snapshot which has been modified as shown above will yield the same error:

$ restic -r /srv/restic-repo restore 79766175 --target /tmp/restore-work
Load indexes
ciphertext verification failed

By default, check command does not check that repository data files are unmodified. Use --read-data parameter
to check all repository data files:

$ restic -r /srv/restic-repo check --read-data
load indexes
check all packs
check snapshots, trees and blobs
read all data

Use --read-data-subset=n/t parameter to check subset of repository data files. The parameter takes two
values, n and t. All repository data files are logically devided in t roughly equal groups and only files that belong to
the group number n are checked. For example, the following commands check all repository data files over 5 separate
invocations:

$ restic -r /srv/restic-repo check --read-data-subset=1/5
$ restic -r /srv/restic-repo check --read-data-subset=2/5
$ restic -r /srv/restic-repo check --read-data-subset=3/5
$ restic -r /srv/restic-repo check --read-data-subset=4/5
$ restic -r /srv/restic-repo check --read-data-subset=5/5

22 Chapter 5. Working with repositories

CHAPTER 6

Restoring from backup

6.1 Restoring from a snapshot

Restoring a snapshot is as easy as it sounds, just use the following command to restore the contents of the latest
snapshot to /tmp/restore-work:

$ restic -r /srv/restic-repo restore 79766175 --target /tmp/restore-work
enter password for repository:
restoring <Snapshot of [/home/user/work] at 2015-05-08 21:40:19.884408621 +0200 CEST>
→˓to /tmp/restore-work

Use the word latest to restore the last backup. You can also combine latest with the --host and --path
filters to choose the last backup for a specific host, path or both.

$ restic -r /srv/restic-repo restore latest --target /tmp/restore-art --path "/home/
→˓art" --host luigi
enter password for repository:
restoring <Snapshot of [/home/art] at 2015-05-08 21:45:17.884408621 +0200 CEST> to /
→˓tmp/restore-art

Use --exclude and --include to restrict the restore to a subset of files in the snapshot. For example, to restore
a single file:

$ restic -r /srv/restic-repo restore 79766175 --target /tmp/restore-work --include /
→˓work/foo
enter password for repository:
restoring <Snapshot of [/home/user/work] at 2015-05-08 21:40:19.884408621 +0200 CEST>
→˓to /tmp/restore-work

This will restore the file foo to /tmp/restore-work/work/foo.

23

restic, Release 0.8.3

6.2 Restore using mount

Browsing your backup as a regular file system is also very easy. First, create a mount point such as /mnt/restic
and then use the following command to serve the repository with FUSE:

$ mkdir /mnt/restic
$ restic -r /srv/restic-repo mount /mnt/restic
enter password for repository:
Now serving /srv/restic-repo at /mnt/restic
Don't forget to umount after quitting!

Mounting repositories via FUSE is not possible on OpenBSD, Solaris/illumos and Windows.

Restic supports storage and preservation of hard links. However, since hard links exist in the scope of a filesystem by
definition, restoring hard links from a fuse mount should be done by a program that preserves hard links. A program
that does so is rsync, used with the option –hard-links.

6.3 Printing files to stdout

Sometimes it’s helpful to print files to stdout so that other programs can read the data directly. This can be achieved
by using the dump command, like this:

$ restic -r /srv/restic-repo dump latest production.sql | mysql

24 Chapter 6. Restoring from backup

CHAPTER 7

Removing backup snapshots

All backup space is finite, so restic allows removing old snapshots. This can be done either manually (by specifying a
snapshot ID to remove) or by using a policy that describes which snapshots to forget. For all remove operations, two
commands need to be called in sequence: forget to remove a snapshot and prune to actually remove the data that
was referenced by the snapshot from the repository. This can be automated with the --prune option of the forget
command, which runs prune automatically if snapshots have been removed.

It is advisable to run restic check after pruning, to make sure you are alerted, should the internal data structures
of the repository be damaged.

7.1 Remove a single snapshot

The command snapshots can be used to list all snapshots in a repository like this:

$ restic -r /srv/restic-repo snapshots
enter password for repository:
ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
bdbd3439 2015-05-08 21:45:17 luigi /home/art
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

In order to remove the snapshot of /home/art, use the forget command and specify the snapshot ID on the
command line:

$ restic -r /srv/restic-repo forget bdbd3439
enter password for repository:
removed snapshot d3f01f63

Afterwards this snapshot is removed:

25

restic, Release 0.8.3

$ restic -r /srv/restic-repo snapshots
enter password for repository:
ID Date Host Tags Directory
--
40dc1520 2015-05-08 21:38:30 kasimir /home/user/work
79766175 2015-05-08 21:40:19 kasimir /home/user/work
590c8fc8 2015-05-08 21:47:38 kazik /srv
9f0bc19e 2015-05-08 21:46:11 luigi /srv

But the data that was referenced by files in this snapshot is still stored in the repository. To cleanup unreferenced data,
the prune command must be run:

$ restic -r /srv/restic-repo prune
enter password for repository:

counting files in repo
building new index for repo
[0:00] 100.00% 22 / 22 files
repository contains 22 packs (8512 blobs) with 100.092 MiB bytes
processed 8512 blobs: 0 duplicate blobs, 0B duplicate
load all snapshots
find data that is still in use for 1 snapshots
[0:00] 100.00% 1 / 1 snapshots
found 8433 of 8512 data blobs still in use
will rewrite 3 packs
creating new index
[0:00] 86.36% 19 / 22 files
saved new index as 544a5084
done

Afterwards the repository is smaller.

You can automate this two-step process by using the --prune switch to forget:

$ restic forget --keep-last 1 --prune
snapshots for host mopped, directories /home/user/work:

keep 1 snapshots:
ID Date Host Tags Directory
--
4bba301e 2017-02-21 10:49:18 mopped /home/user/work

remove 1 snapshots:
ID Date Host Tags Directory
--
8c02b94b 2017-02-21 10:48:33 mopped /home/user/work

1 snapshots have been removed, running prune
counting files in repo
building new index for repo
[0:00] 100.00% 37 / 37 packs
repository contains 37 packs (5521 blobs) with 151.012 MiB bytes
processed 5521 blobs: 0 duplicate blobs, 0B duplicate
load all snapshots
find data that is still in use for 1 snapshots
[0:00] 100.00% 1 / 1 snapshots
found 5323 of 5521 data blobs still in use, removing 198 blobs
will delete 0 packs and rewrite 27 packs, this frees 22.106 MiB

(continues on next page)

26 Chapter 7. Removing backup snapshots

restic, Release 0.8.3

(continued from previous page)

creating new index
[0:00] 100.00% 30 / 30 packs
saved new index as b49f3e68
done

7.2 Removing snapshots according to a policy

Removing snapshots manually is tedious and error-prone, therefore restic allows specifying which snapshots should
be removed automatically according to a policy. You can specify how many hourly, daily, weekly, monthly and
yearly snapshots to keep, any other snapshots are removed. The most important command-line parameter here is
--dry-run which instructs restic to not remove anything but print which snapshots would be removed.

When forget is run with a policy, restic loads the list of all snapshots, then groups these by host name and list
of directories. The grouping options can be set with --group-by, to only group snapshots by paths and tags use
--group-by paths,tags. The policy is then applied to each group of snapshots separately. This is a safety
feature.

The forget command accepts the following parameters:

• --keep-last n never delete the n last (most recent) snapshots

• --keep-hourly n for the last n hours in which a snapshot was made, keep only the last snapshot for each
hour.

• --keep-daily n for the last n days which have one or more snapshots, only keep the last one for that day.

• --keep-weekly n for the last n weeks which have one or more snapshots, only keep the last one for that
week.

• --keep-monthly n for the last n months which have one or more snapshots, only keep the last one for that
month.

• --keep-yearly n for the last n years which have one or more snapshots, only keep the last one for that
year.

• --keep-tag keep all snapshots which have all tags specified by this option (can be specified multiple times).

Additionally, you can restrict removing snapshots to those which have a particular hostname with the --hostname
parameter, or tags with the --tag option. When multiple tags are specified, only the snapshots which have all the
tags are considered. For example, the following command removes all but the latest snapshot of all snapshots that have
the tag foo:

$ restic forget --tag foo --keep-last 1

This command removes all but the last snapshot of all snapshots that have either the foo or bar tag set:

$ restic forget --tag foo --tag bar --keep-last 1

To only keep the last snapshot of all snapshots with both the tag foo and bar set use:

$ restic forget --tag foo,tag bar --keep-last 1

All the --keep-* options above only count hours/days/weeks/months/years which have a snapshot, so those without
a snapshot are ignored.

7.2. Removing snapshots according to a policy 27

restic, Release 0.8.3

For safety reasons, restic refuses to act on an “empty” policy. For example, if one were to specify --keep-last 0
to forget all snapshots in the repository, restic will respond that no snapshots will be removed. To delete all snapshots,
use --keep-last 1 and then finally remove the last snapshot ID manually (by passing the ID to forget).

All snapshots are evaluated against all matching --keep-* counts. A single snapshot on 2017-09-30 (Sun) will
count as a daily, weekly and monthly.

Let’s explain this with an example: Suppose you have only made a backup on each Sunday for 12 weeks. Then
forget --keep-daily 4 will keep the last four snapshots for the last four Sundays, but remove the rest. Only
counting the days which have a backup and ignore the ones without is a safety feature: it prevents restic from removing
many snapshots when no new ones are created. If it was implemented otherwise, running forget --keep-daily
4 on a Friday would remove all snapshots!

Another example: Suppose you make daily backups for 100 years. Then forget --keep-daily 7
--keep-weekly 5 --keep-monthly 12 --keep-yearly 75 will keep the most recent 7 daily snap-
shots, then 4 (remember, 7 dailies already include a week!) last-day-of-the-weeks and 11 or 12 last-day-of-the-months
(11 or 12 depends if the 5 weeklies cross a month). And finally 75 last-day-of-the-year snapshots. All other snapshots
are removed.

28 Chapter 7. Removing backup snapshots

CHAPTER 8

Encryption

“The design might not be perfect, but it’s good. Encryption is a first-class feature, the implementation looks sane and I
guess the deduplication trade-off is worth it. So. . . I’m going to use restic for my personal backups.” Filippo Valsorda

8.1 Manage repository keys

The key command allows you to set multiple access keys or passwords per repository. In fact, you can use the list,
add, remove, and passwd (changes a password) sub-commands to manage these keys very precisely:

$ restic -r /srv/restic-repo key list
enter password for repository:
ID User Host Created

--

*eb78040b username kasimir 2015-08-12 13:29:57

$ restic -r /srv/restic-repo key add
enter password for repository:
enter password for new key:
enter password again:
saved new key as <Key of username@kasimir, created on 2015-08-12 13:35:05.316831933
→˓+0200 CEST>

$ restic -r /srv/restic-repo key list
enter password for repository:
ID User Host Created

--
5c657874 username kasimir 2015-08-12 13:35:05

*eb78040b username kasimir 2015-08-12 13:29:57

29

https://blog.filippo.io/restic-cryptography/

restic, Release 0.8.3

30 Chapter 8. Encryption

CHAPTER 9

Scripting

This is a list of how certain tasks may be accomplished when you use restic via scripts.

9.1 Check if a repository is already initialized

You may find a need to check if a repository is already initialized, perhaps to prevent your script from initializing a
repository multiple times. The command snapshots may be used for this purpose:

$ restic -r /srv/restic-repo snapshots
Fatal: unable to open config file: Stat: stat /srv/restic-repo/config: no such file
→˓or directory
Is there a repository at the following location?
/srv/restic-repo

If a repository does not exist, restic will return a non-zero exit code and print an error message. Note that restic will
also return a non-zero exit code if a different error is encountered (e.g.: incorrect password to snapshots) and it
may print a different error message. If there are no errors, restic will return a zero exit code and print all the snapshots.

31

restic, Release 0.8.3

32 Chapter 9. Scripting

CHAPTER 10

Examples

10.1 Setting up restic with Amazon S3

10.1.1 Preface

This tutorial will show you how to use restic with AWS S3. It will show you how to navigate the AWS web interface,
create an S3 bucket, create a user with access to only this bucket, and finally how to connect restic to this bucket.

10.1.2 Prerequisites

You should already have a restic binary available on your system that you can run. Furthermore, you should also
have an account with AWS. You will likely need to provide credit card details for billing purposes, even if you use
their free-tier.

10.1.3 Logging into AWS

Point your browser to https://console.aws.amazon.com and log in using your AWS account. You will be presented
with the AWS homepage:

33

https://aws.amazon.com/
https://aws.amazon.com/free/
https://console.aws.amazon.com

restic, Release 0.8.3

By using the “Services” button in the upper left corder, a menu of all services provided by AWS can be opened:

34 Chapter 10. Examples

restic, Release 0.8.3

For this tutorial, the Simple Storage Service (S3), as well as Identity and Access Management (IAM) are relevant.

10.1.4 Creating the bucket

First, a bucket to store your backups in must be created. Using the “Services” menu, navigate to S3. In case you
already have some S3 buckets, you will see a list of them here:

Click the “Create bucket” button and choose a name and region for your new bucket. For the purpose of this tutorial,
the bucket will be named restic-demo and reside in Frankfurt. Because the bucket name space is shared among
all AWS users, the name restic-demo may not be available to you. Be creative and choose a unique bucket name.

10.1. Setting up restic with Amazon S3 35

restic, Release 0.8.3

It is not necessary to configure any special properties or permissions of the bucket just yet. Therefore, just finish the
wizard without making any further changes:

36 Chapter 10. Examples

restic, Release 0.8.3

The newly created restic-demo bucket will now appear on the list of S3 buckets:

10.1. Setting up restic with Amazon S3 37

restic, Release 0.8.3

10.1.5 Creating a user

Use the “Services” menu of the AWS web interface to navigate to IAM. This will bring you to the IAM homepage. To
create a new user, click on the “Users” menu entry on the left:

In case you already have set-up users with IAM before, you will see a list of them here. Use the “Add user” button at
the top to create a new user:

38 Chapter 10. Examples

restic, Release 0.8.3

For this tutorial, the new user will be named restic-demo-user. Feel free to choose your own name that best fits
your needs. This user will only ever access AWS through the restic program and not through the web interface.
Therefore, “Programmatic access” is selected for “Access type”:

10.1. Setting up restic with Amazon S3 39

restic, Release 0.8.3

During the next step, permissions can be assigned to the new user. To use this user with restic, it only needs access to
the restic-demo bucket. Select “Attach existing policies directly”, which will bring up a list of pre-defined policies
below. Afterwards, click the “Create policy” button to create a custom policy:

40 Chapter 10. Examples

restic, Release 0.8.3

A new browser window or tab will open with the policy wizard. In Amazon IAM, policies are defined as JSON
documents. For this tutorial, the “Visual editor” will be used to generate a policy:

10.1. Setting up restic with Amazon S3 41

restic, Release 0.8.3

For restic to work, two permission statements must be created using the visual policy editor. The first statement is set
up as follows:

Service: S3
Allow Actions: DeleteObject, GetObject, PutObject
Resources: arn:aws:s3:::restic-demo/*

This statement allows restic to create, read and delete objects inside the S3 bucket named restic-demo. Adjust the
bucket’s name to the name of the bucket you created earlier. Next, add a second statement using the “Add additional
permissions” button:

Service: S3
Allow Actions: ListBucket, GetBucketLocation
Resource: arn:aws:s3:::restic-demo

Again, substitute restic-demo with the actual name of your bucket. Note that, unlike before, there is no /* after
the bucket name. This statement allows restic to list the objects stored in the restic-demo bucket and to query the
bucket’s region.

Continue to the next step by clicking the “Review policy” button and enter a name and description for this policy. For
this tutorial, the policy will be named restic-demo-policy. Click “Create policy” to finish the process:

42 Chapter 10. Examples

restic, Release 0.8.3

Go back to the browser window or tab where you were previously creating the new user. Click the button labeled
“Refresh” above the list of policies to make sure the newly created policy is available to you. Afterwards, use the
search function to search for the restic-demo-policy. Select this policy using the checkbox on the left. Then,
continue to the next step.

10.1. Setting up restic with Amazon S3 43

restic, Release 0.8.3

The next page will present an overview of the user account that is about to be created. If everything looks good, click
“Create user” to complete the process:

44 Chapter 10. Examples

restic, Release 0.8.3

After the user has been created, its access credentials will be displayed. They consist of the “Access key ID” (think
user name), and the “Secret access key” (think password). Copy these down to a safe place.

10.1. Setting up restic with Amazon S3 45

restic, Release 0.8.3

You have now completed the configuration in AWS. Feel free to close your web browser now.

10.1.6 Initializing the restic repository

Open a terminal and make sure you have the restic binary ready. First, choose a password to encrypt your backups
with. In this tutorial, apg is used for this purpose:

$ apg -a 1 -m 32 -n 1 -M NCL
I9n7G7G0ZpDWA3GOcJbIuwQCGvGUBkU5

Note this password somewhere safe along with your AWS credentials. Next, the configuration of restic will be placed
into environment variables. This will include sensitive information, such as your AWS secret and repository pass-
word. Therefore, make sure the next commands do not end up in your shell’s history file. Adjust the contents of the
environment variables to fit your bucket’s name and your user’s API credentials.

$ unset HISTFILE
$ export RESTIC_REPOSITORY="s3:https://s3.amazonaws.com/restic-demo"
$ export AWS_ACCESS_KEY_ID="AKIAJAJSLTZCAZ4SRI5Q"
$ export AWS_SECRET_ACCESS_KEY="LaJtZPoVvGbXsaD2LsxvJZF/7LRi4FhT0TK4gDQq"
$ export RESTIC_PASSWORD="I9n7G7G0ZpDWA3GOcJbIuwQCGvGUBkU5"

After the environment is set up, restic may be called to initialize the repository:

$./restic init
created restic backend b5c661a86a at s3:https://s3.amazonaws.com/restic-demo

Please note that knowledge of your password is required to access

(continues on next page)

46 Chapter 10. Examples

restic, Release 0.8.3

(continued from previous page)

the repository. Losing your password means that your data is
irrecoverably lost.

restic is now ready to be used with AWS S3. Try to create a backup:

$ dd if=/dev/urandom bs=1M count=10 of=test.bin
10+0 records in
10+0 records out
10485760 bytes (10 MB, 10 MiB) copied, 0,0891322 s, 118 MB/s

$./restic backup test.bin
scan [/home/philip/restic-demo/test.bin]
scanned 0 directories, 1 files in 0:00
[0:04] 100.00% 2.500 MiB/s 10.000 MiB / 10.000 MiB 1 / 1 items ... ETA 0:00
duration: 0:04, 2.47MiB/s
snapshot 10fdbace saved

$./restic snapshots
ID Date Host Tags Directory
--
10fdbace 2017-03-26 16:41:50 blackbox /home/philip/restic-demo/test.
→˓bin

A snapshot was created and stored in the S3 bucket. This snapshot may now be restored:

$ mkdir restore

$./restic restore 10fdbace --target restore
restoring <Snapshot 10fdbace of [/home/philip/restic-demo/test.bin] at 2017-03-26
→˓16:41:50.201418102 +0200 CEST by philip@blackbox> to restore

$ ls restore/
test.bin

The snapshot was successfully restored. This concludes the tutorial.

10.2 Backing up your system without running restic as root

10.2.1 Motivation

Creating a complete backup of a machine requires a privileged process that is able to read all files. On UNIX-like
systems this is traditionally the root user. Processes running as root have superpower. They cannot only read all files
but do also have the power to modify the system in any possible way.

With great power comes great responsibility. If a process running as root malfunctions, is exploited, or simply config-
ured in a wrong way it can cause any possible damage to the system. This means you only want to run programs as
root that you trust completely. And even if you trust a program, it is good and common practice to run it with the least
possible privileges.

10.2.2 Capabilities on Linux

Fortunately, Linux has functionality to divide root’s power into single separate capabilities. You can remove these
from a process running as root to restrict it. And you can add capabilities to a process running as a normal user, which

10.2. Backing up your system without running restic as root 47

restic, Release 0.8.3

is what we are going to do.

10.2.3 Full backup without root

To be able to completely backup a system, restic has to read all the files. Luckily Linux knows a capability that allows
precisely this. We can assign this single capability to restic and then run it as an unprivileged user.

First we create a new user called restic that is going to create the backups:

root@a3e580b6369d:/# useradd -m restic

Then we download and install the restic binary into the user’s home directory.

root@a3e580b6369d:/# mkdir ~restic/bin
root@a3e580b6369d:/# curl -L https://github.com/restic/restic/releases/download/v0.8.
→˓0/restic_0.8.0_linux_amd64.bz2 | bunzip2 > ~restic/bin/restic

Before we assign any special capability to the restic binary we restrict its permissions so that only root and the newly
created restic user can execute it. Otherwise another - possibly untrusted - user could misuse the privileged restic
binary to circumvent file access controls.

root@a3e580b6369d:/# chown root:restic ~restic/bin/restic
root@a3e580b6369d:/# chmod 750 ~restic/bin/restic

Finally we can use setcap to add an extended attribute to the restic binary. On every execution the system will read
the extended attribute, interpret it and assign capabilities accordingly.

root@a3e580b6369d:/# setcap cap_dac_read_search=+ep ~restic/bin/restic

From now on the user restic can run restic to backup the whole system.

root@a3e580b6369d:/# sudo -u restic /opt/restic/bin/restic --exclude={/dev,/media,/
→˓mnt,/proc,/run,/sys,/tmp,/var/tmp} -r /tmp backup /

48 Chapter 10. Examples

CHAPTER 11

Participating

11.1 Debugging

The program can be built with debug support like this:

$ go run build.go -tags debug

Afterwards, extensive debug messages are written to the file in environment variable DEBUG_LOG, e.g.:

$ DEBUG_LOG=/tmp/restic-debug.log restic backup ~/work

If you suspect that there is a bug, you can have a look at the debug log. Please be aware that the debug log might
contain sensitive information such as file and directory names.

The debug log will always contain all log messages restic generates. You can also instruct restic to print some or all
debug messages to stderr. These can also be limited to e.g. a list of source files or a list of patterns for function names.
The patterns are globbing patterns (see the documentation for path.Glob), multiple patterns are separated by commas.
Patterns are case sensitive.

Printing all log messages to the console can be achieved by setting the file filter to *:

$ DEBUG_FILES=* restic check

If you want restic to just print all debug log messages from the files main.go and lock.go, set the environment
variable DEBUG_FILES like this:

$ DEBUG_FILES=main.go,lock.go restic check

The following command line instructs restic to only print debug statements originating in functions that match the
pattern *unlock* (case sensitive):

$ DEBUG_FUNCS=*unlock* restic check

49

https://golang.org/pkg/path/#Glob

restic, Release 0.8.3

11.2 Contributing

Contributions are welcome! Please open an issue first (or add a comment to an existing issue) if you plan to work on
any code or add a new feature. This way, duplicate work is prevented and we can discuss your ideas and design first.

More information and a description of the development environment can be found in CONTRIBUTING.md. A docu-
ment describing the design of restic and the data structures stored on the back end is contained in Design.

If you’d like to start contributing to restic, but don’t know exactly what do to, have a look at this great article by Dave
Cheney: Suggestions for contributing to an Open Source project A few issues have been tagged with the label help
wanted, you can start looking at those: https://github.com/restic/restic/labels/help%20wanted

11.3 Security

Important: If you discover something that you believe to be a possible critical security problem, please do not open
a GitHub issue but send an email directly to alexander@bumpern.de. If possible, please encrypt your email using the
following PGP key (0x91A6868BD3F7A907):

pub 4096R/91A6868BD3F7A907 2014-11-01
Key fingerprint = CF8F 18F2 8445 7597 3F79 D4E1 91A6 868B D3F7 A907
uid Alexander Neumann <alexander@bumpern.de>
sub 4096R/D5FC2ACF4043FDF1 2014-11-01

11.4 Compatibility

Backward compatibility for backups is important so that our users are always able to restore saved data. Therefore
restic follows Semantic Versioning to clearly define which versions are compatible. The repository and data structures
contained therein are considered the “Public API” in the sense of Semantic Versioning. This goes for all released
versions of restic, this may not be the case for the master branch.

We guarantee backward compatibility of all repositories within one major version; as long as we do not increment the
major version, data can be read and restored. We strive to be fully backward compatible to all prior versions.

11.5 Building documentation

The restic documentation is built with Sphinx, therefore building it locally requires a recent Python version and re-
quirements listed in doc/requirements.txt. This example will guide you through the process using virtualenv:

$ virtualenv venv # create virtual python environment
$ source venv/bin/activate # activate the virtual environment
$ cd doc
$ pip install -r requirements.txt # install dependencies
$ make html # build html documentation
$ # open _build/html/index.html with your favorite browser

50 Chapter 11. Participating

https://github.com/restic/restic/blob/master/CONTRIBUTING.md
https://restic.readthedocs.io/en/latest/design.html
http://dave.cheney.net/2016/03/12/suggestions-for-contributing-to-an-open-source-project
https://github.com/restic/restic/labels/help%20wanted
mailto:alexander@bumpern.de
https://pgp.mit.edu/pks/lookup?op=get&search=0xCF8F18F2844575973F79D4E191A6868BD3F7A907
http://semver.org
http://sphinx-doc.org
https://virtualenv.pypa.io

CHAPTER 12

References

12.1 Design

12.1.1 Terminology

This section introduces terminology used in this document.

Repository: All data produced during a backup is sent to and stored in a repository in a structured form, for example
in a file system hierarchy with several subdirectories. A repository implementation must be able to fulfill a number of
operations, e.g. list the contents.

Blob: A Blob combines a number of data bytes with identifying information like the SHA-256 hash of the data and its
length.

Pack: A Pack combines one or more Blobs, e.g. in a single file.

Snapshot: A Snapshot stands for the state of a file or directory that has been backed up at some point in time. The state
here means the content and meta data like the name and modification time for the file or the directory and its contents.

Storage ID: A storage ID is the SHA-256 hash of the content stored in the repository. This ID is required in order to
load the file from the repository.

12.1.2 Repository Format

All data is stored in a restic repository. A repository is able to store data of several different types, which can later
be requested based on an ID. This so-called “storage ID” is the SHA-256 hash of the content of a file. All files
in a repository are only written once and never modified afterwards. This allows accessing and even writing to the
repository with multiple clients in parallel. Only the prune operation removes data from the repository.

Repositories consist of several directories and a top-level file called config. For all other files stored in the repository,
the name for the file is the lower case hexadecimal representation of the storage ID, which is the SHA-256 hash of the
file’s contents. This allows for easy verification of files for accidental modifications, like disk read errors, by simply
running the program sha256sum on the file and comparing its output to the file name. If the prefix of a filename is
unique amongst all the other files in the same directory, the prefix may be used instead of the complete filename.

51

restic, Release 0.8.3

Apart from the files stored within the keys directory, all files are encrypted with AES-256 in counter mode (CTR). The
integrity of the encrypted data is secured by a Poly1305-AES message authentication code (sometimes also referred
to as a “signature”).

In the first 16 bytes of each encrypted file the initialisation vector (IV) is stored. It is followed by the encrypted
data and completed by the 16 byte MAC. The format is: IV || CIPHERTEXT || MAC. The complete encryption
overhead is 32 bytes. For each file, a new random IV is selected.

The file config is encrypted this way and contains a JSON document like the following:

{
"version": 1,
"id": "5956a3f67a6230d4a92cefb29529f10196c7d92582ec305fd71ff6d331d6271b",
"chunker_polynomial": "25b468838dcb75"

}

After decryption, restic first checks that the version field contains a version number that it understands, otherwise it
aborts. At the moment, the version is expected to be 1. The field id holds a unique ID which consists of 32 random
bytes, encoded in hexadecimal. This uniquely identifies the repository, regardless if it is accessed via SFTP or locally.
The field chunker_polynomial contains a parameter that is used for splitting large files into smaller chunks (see
below).

Repository Layout

The local and sftp backends are implemented using files and directories stored in a file system. The directory
layout is the same for both backend types.

The basic layout of a repository stored in a local or sftp backend is shown here:

/tmp/restic-repo
config
data

21
2159dd48f8a24f33c307b750592773f8b71ff8d11452132a7b2e2a6a01611be1

32
32ea976bc30771cebad8285cd99120ac8786f9ffd42141d452458089985043a5

59
59fe4bcde59bd6222eba87795e35a90d82cd2f138a27b6835032b7b58173a426

73
73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c

[...]
index

c38f5fb68307c6a3e3aa945d556e325dc38f5fb68307c6a3e3aa945d556e325d
ca171b1b7394d90d330b265d90f506f9984043b342525f019788f97e745c71fd

keys
b02de829beeb3c01a63e6b25cbd421a98fef144f03b9a02e46eff9e2ca3f0bd7

locks
snapshots

22a5af1bdc6e616f8a29579458c49627e01b32210d09adb288d1ecda7c5711ec
tmp

A local repository can be initialized with the restic init command, e.g.:

$ restic -r /tmp/restic-repo init

The local and sftp backends will auto-detect and accept all layouts described in the following sections, so that remote
repositories mounted locally e.g. via fuse can be accessed. The layout auto-detection can be overridden by specifying

52 Chapter 12. References

restic, Release 0.8.3

the option -o local.layout=default, valid values are default and s3legacy. The option for the sftp
backend is named sftp.layout, for the s3 backend s3.layout.

S3 Legacy Layout

Unfortunately during development the AWS S3 backend uses slightly different paths (directory names use singular
instead of plural for key, lock, and snapshot files), and the data files are stored directly below the data directory.
The S3 Legacy repository layout looks like this:

/config
/data

2159dd48f8a24f33c307b750592773f8b71ff8d11452132a7b2e2a6a01611be1
32ea976bc30771cebad8285cd99120ac8786f9ffd42141d452458089985043a5
59fe4bcde59bd6222eba87795e35a90d82cd2f138a27b6835032b7b58173a426
73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c

[...]
/index

c38f5fb68307c6a3e3aa945d556e325dc38f5fb68307c6a3e3aa945d556e325d
ca171b1b7394d90d330b265d90f506f9984043b342525f019788f97e745c71fd

/key
b02de829beeb3c01a63e6b25cbd421a98fef144f03b9a02e46eff9e2ca3f0bd7

/lock
/snapshot

22a5af1bdc6e616f8a29579458c49627e01b32210d09adb288d1ecda7c5711ec

The S3 backend understands and accepts both forms, new backends are always created with the default layout for
compatibility reasons.

12.1.3 Pack Format

All files in the repository except Key and Pack files just contain raw data, stored as IV || Ciphertext || MAC.
Pack files may contain one or more Blobs of data.

A Pack’s structure is as follows:

EncryptedBlob1 || ... || EncryptedBlobN || EncryptedHeader || Header_Length

At the end of the Pack file is a header, which describes the content. The header is encrypted and authenticated.
Header_Length is the length of the encrypted header encoded as a four byte integer in little-endian encoding.
Placing the header at the end of a file allows writing the blobs in a continuous stream as soon as they are read during
the backup phase. This reduces code complexity and avoids having to re-write a file once the pack is complete and the
content and length of the header is known.

All the blobs (EncryptedBlob1, EncryptedBlobN etc.) are authenticated and encrypted independently. This
enables repository reorganisation without having to touch the encrypted Blobs. In addition it also allows efficient
indexing, for only the header needs to be read in order to find out which Blobs are contained in the Pack. Since the
header is authenticated, authenticity of the header can be checked without having to read the complete Pack.

After decryption, a Pack’s header consists of the following elements:

Type_Blob1 || Length(EncryptedBlob1) || Hash(Plaintext_Blob1) ||
[...]
Type_BlobN || Length(EncryptedBlobN) || Hash(Plaintext_Blobn) ||

12.1. Design 53

restic, Release 0.8.3

This is enough to calculate the offsets for all the Blobs in the Pack. Length is the length of a Blob as a four byte integer
in little-endian format. The type field is a one byte field and labels the content of a blob according to the following
table:

Type Meaning
0 data
1 tree

All other types are invalid, more types may be added in the future.

For reconstructing the index or parsing a pack without an index, first the last four bytes must be read in order to find the
length of the header. Afterwards, the header can be read and parsed, which yields all plaintext hashes, types, offsets
and lengths of all included blobs.

12.1.4 Indexing

Index files contain information about Data and Tree Blobs and the Packs they are contained in and store this infor-
mation in the repository. When the local cached index is not accessible any more, the index files can be downloaded
and used to reconstruct the index. The files are encrypted and authenticated like Data and Tree Blobs, so the outer
structure is IV || Ciphertext || MAC again. The plaintext consists of a JSON document like the following:

{
"supersedes": [
"ed54ae36197f4745ebc4b54d10e0f623eaaaedd03013eb7ae90df881b7781452"

],
"packs": [
{

"id": "73d04e6125cf3c28a299cc2f3cca3b78ceac396e4fcf9575e34536b26782413c",
"blobs": [

{
"id": "3ec79977ef0cf5de7b08cd12b874cd0f62bbaf7f07f3497a5b1bbcc8cb39b1ce",
"type": "data",
"offset": 0,
"length": 25

},{
"id": "9ccb846e60d90d4eb915848add7aa7ea1e4bbabfc60e573db9f7bfb2789afbae",
"type": "tree",
"offset": 38,
"length": 100

},
{
"id": "d3dc577b4ffd38cc4b32122cabf8655a0223ed22edfd93b353dc0c3f2b0fdf66",
"type": "data",
"offset": 150,
"length": 123

}
]

}, [...]
]

}

This JSON document lists Packs and the blobs contained therein. In this example, the Pack 73d04e61 contains two
data Blobs and one Tree blob, the plaintext hashes are listed afterwards.

The field supersedes lists the storage IDs of index files that have been replaced with the current index file. This
happens when index files are repacked, for example when old snapshots are removed and Packs are recombined.

54 Chapter 12. References

restic, Release 0.8.3

There may be an arbitrary number of index files, containing information on non-disjoint sets of Packs. The number of
packs described in a single file is chosen so that the file size is kept below 8 MiB.

12.1.5 Keys, Encryption and MAC

All data stored by restic in the repository is encrypted with AES-256 in counter mode and authenticated using
Poly1305-AES. For encrypting new data first 16 bytes are read from a cryptographically secure pseudorandom number
generator as a random nonce. This is used both as the IV for counter mode and the nonce for Poly1305. This operation
needs three keys: A 32 byte for AES-256 for encryption, a 16 byte AES key and a 16 byte key for Poly1305. For details
see the original paper The Poly1305-AES message-authentication code by Dan Bernstein. The data is then encrypted
with AES-256 and afterwards a message authentication code (MAC) is computed over the ciphertext, everything is
then stored as IV || CIPHERTEXT || MAC.

The directory keys contains key files. These are simple JSON documents which contain all data that is needed
to derive the repository’s master encryption and message authentication keys from a user’s password. The JSON
document from the repository can be pretty-printed for example by using the Python module json (shortened to
increase readability):

$ python -mjson.tool /tmp/restic-repo/keys/b02de82*
{

"hostname": "kasimir",
"username": "fd0"
"kdf": "scrypt",
"N": 65536,
"r": 8,
"p": 1,
"created": "2015-01-02T18:10:13.48307196+01:00",
"data": "tGwYeKoM0C4j4/9DFrVEmMGAldvEn/+iKC3te/QE/6ox/V4qz58FUOgMa0Bb1cIJ6asrypCx/

→˓Ti/
→˓pRXCPHLDkIJbNYd2ybC+fLhFIJVLCvkMS+trdywsUkglUbTbi+7+Ldsul5jpAj9vTZ25ajDc+4FKtWEcCWL5ICAOoTAxnPgT+Lh8ByGQBH6KbdWabqamLzTRWxePFoYuxa7yXgmj9A==
→˓",

"salt": "uW4fEI1+IOzj7ED9mVor+yTSJFd68DGlGOeLgJELYsTU5ikhG/83/
→˓+jGd4KKAaQdSrsfzrdOhAMftTSih5Ux6w==",
}

When the repository is opened by restic, the user is prompted for the repository password. This is then used with
scrypt, a key derivation function (KDF), and the supplied parameters (N, r, p and salt) to derive 64 key bytes. The
first 32 bytes are used as the encryption key (for AES-256) and the last 32 bytes are used as the message authentication
key (for Poly1305-AES). These last 32 bytes are divided into a 16 byte AES key k followed by 16 bytes of secret key
r. The key r is then masked for use with Poly1305 (see the paper for details).

Those keys are used to authenticate and decrypt the bytes contained in the JSON field data with AES-256 and
Poly1305-AES as if they were any other blob (after removing the Base64 encoding). If the password is incorrect
or the key file has been tampered with, the computed MAC will not match the last 16 bytes of the data, and restic
exits with an error. Otherwise, the data yields a JSON document which contains the master encryption and message
authentication keys for this repository (encoded in Base64). The command restic cat masterkey can be used
as follows to decrypt and pretty-print the master key:

$ restic -r /tmp/restic-repo cat masterkey
{

"mac": {
"k": "evFWd9wWlndL9jc501268g==",
"r": "E9eEDnSJZgqwTOkDtOp+Dw=="

},
"encrypt": "UQCqa0lKZ94PygPxMRqkePTZnHRYh1k1pX2k2lM2v3Q=",

}

12.1. Design 55

http://cr.yp.to/mac/poly1305-20050329.pdf

restic, Release 0.8.3

All data in the repository is encrypted and authenticated with these master keys. For encryption, the AES-256 algo-
rithm in Counter mode is used. For message authentication, Poly1305-AES is used as described above.

A repository can have several different passwords, with a key file for each. This way, the password can be changed
without having to re-encrypt all data.

12.1.6 Snapshots

A snapshot represents a directory with all files and sub-directories at a given point in time. For each backup that is
made, a new snapshot is created. A snapshot is a JSON document that is stored in an encrypted file below the directory
snapshots in the repository. The filename is the storage ID. This string is unique and used within restic to uniquely
identify a snapshot.

The command restic cat snapshot can be used as follows to decrypt and pretty-print the contents of a snap-
shot file:

$ restic -r /tmp/restic-repo cat snapshot 251c2e58
enter password for repository:
{

"time": "2015-01-02T18:10:50.895208559+01:00",
"tree": "2da81727b6585232894cfbb8f8bdab8d1eccd3d8f7c92bc934d62e62e618ffdf",
"dir": "/tmp/testdata",
"hostname": "kasimir",
"username": "fd0",
"uid": 1000,
"gid": 100,
"tags": [
"NL"

]
}

Here it can be seen that this snapshot represents the contents of the directory /tmp/testdata. The most important
field is tree. When the meta data (e.g. the tags) of a snapshot change, the snapshot needs to be re-encrypted and
saved. This will change the storage ID, so in order to relate these seemingly different snapshots, a field original
is introduced which contains the ID of the original snapshot, e.g. after adding the tag DE to the snapshot above it
becomes:

$ restic -r /tmp/restic-repo cat snapshot 22a5af1b
enter password for repository:
{

"time": "2015-01-02T18:10:50.895208559+01:00",
"tree": "2da81727b6585232894cfbb8f8bdab8d1eccd3d8f7c92bc934d62e62e618ffdf",
"dir": "/tmp/testdata",
"hostname": "kasimir",
"username": "fd0",
"uid": 1000,
"gid": 100,
"tags": [
"NL",
"DE"

],
"original": "251c2e5841355f743f9d4ffd3260bee765acee40a6229857e32b60446991b837"

}

Once introduced, the original field is not modified when the snapshot’s meta data is changed again.

All content within a restic repository is referenced according to its SHA-256 hash. Before saving, each file is split into

56 Chapter 12. References

restic, Release 0.8.3

variable sized Blobs of data. The SHA-256 hashes of all Blobs are saved in an ordered list which then represents the
content of the file.

In order to relate these plaintext hashes to the actual location within a Pack file , an index is used. If the index is not
available, the header of all data Blobs can be read.

12.1.7 Trees and Data

A snapshot references a tree by the SHA-256 hash of the JSON string representation of its contents. Trees and data
are saved in pack files in a subdirectory of the directory data.

The command restic cat blob can be used to inspect the tree referenced above (piping the output of the com-
mand to jq . so that the JSON is indented):

$ restic -r /tmp/restic-repo cat blob
→˓2da81727b6585232894cfbb8f8bdab8d1eccd3d8f7c92bc934d62e62e618ffdf | jq .
enter password for repository:
{

"nodes": [
{

"name": "testdata",
"type": "dir",
"mode": 493,
"mtime": "2014-12-22T14:47:59.912418701+01:00",
"atime": "2014-12-06T17:49:21.748468803+01:00",
"ctime": "2014-12-22T14:47:59.912418701+01:00",
"uid": 1000,
"gid": 100,
"user": "fd0",
"inode": 409704562,
"content": null,
"subtree": "b26e315b0988ddcd1cee64c351d13a100fedbc9fdbb144a67d1b765ab280b4dc"

}
]

}

A tree contains a list of entries (in the field nodes) which contain meta data like a name and timestamps. When the
entry references a directory, the field subtree contains the plain text ID of another tree object.

When the command restic cat blob is used, the plaintext ID is needed to print a tree. The tree referenced above
can be dumped as follows:

$ restic -r /tmp/restic-repo cat blob
→˓b26e315b0988ddcd1cee64c351d13a100fedbc9fdbb144a67d1b765ab280b4dc
enter password for repository:
{

"nodes": [
{

"name": "testfile",
"type": "file",
"mode": 420,
"mtime": "2014-12-06T17:50:23.34513538+01:00",
"atime": "2014-12-06T17:50:23.338468713+01:00",
"ctime": "2014-12-06T17:50:23.34513538+01:00",
"uid": 1000,
"gid": 100,
"user": "fd0",

(continues on next page)

12.1. Design 57

restic, Release 0.8.3

(continued from previous page)

"inode": 416863351,
"size": 1234,
"links": 1,
"content": [

"50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d"
]

},
[...]

]
}

This tree contains a file entry. This time, the subtree field is not present and the content field contains a list with
one plain text SHA-256 hash.

The command restic cat blob can also be used to extract and decrypt data given a plaintext ID, e.g. for the
data mentioned above:

$ restic -r /tmp/restic-repo cat blob
→˓50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d | sha256sum
enter password for repository:
50f77b3b4291e8411a027b9f9b9e64658181cc676ce6ba9958b95f268cb1109d -

As can be seen from the output of the program sha256sum, the hash matches the plaintext hash from the map
included in the tree above, so the correct data has been returned.

12.1.8 Locks

The restic repository structure is designed in a way that allows parallel access of multiple instance of restic and even
parallel writes. However, there are some functions that work more efficient or even require exclusive access of the
repository. In order to implement these functions, restic processes are required to create a lock on the repository before
doing anything.

Locks come in two types: Exclusive and non-exclusive locks. At most one process can have an exclusive lock on
the repository, and during that time there must not be any other locks (exclusive and non-exclusive). There may be
multiple non-exclusive locks in parallel.

A lock is a file in the subdir locks whose filename is the storage ID of the contents. It is encrypted and authenticated
the same way as other files in the repository and contains the following JSON structure:

{
"time": "2015-06-27T12:18:51.759239612+02:00",
"exclusive": false,
"hostname": "kasimir",
"username": "fd0",
"pid": 13607,
"uid": 1000,
"gid": 100

}

The field exclusive defines the type of lock. When a new lock is to be created, restic checks all locks in the
repository. When a lock is found, it is tested if the lock is stale, which is the case for locks with timestamps older than
30 minutes. If the lock was created on the same machine, even for younger locks it is tested whether the process is still
alive by sending a signal to it. If that fails, restic assumes that the process is dead and considers the lock to be stale.

When a new lock is to be created and no other conflicting locks are detected, restic creates a new lock, waits, and
checks if other locks appeared in the repository. Depending on the type of the other locks and the lock to be created,

58 Chapter 12. References

restic, Release 0.8.3

restic either continues or fails.

12.1.9 Backups and Deduplication

For creating a backup, restic scans the source directory for all files, sub-directories and other entries. The data from
each file is split into variable length Blobs cut at offsets defined by a sliding window of 64 byte. The implementa-
tion uses Rabin Fingerprints for implementing this Content Defined Chunking (CDC). An irreducible polynomial is
selected at random and saved in the file config when a repository is initialized, so that watermark attacks are much
harder.

Files smaller than 512 KiB are not split, Blobs are of 512 KiB to 8 MiB in size. The implementation aims for 1 MiB
Blob size on average.

For modified files, only modified Blobs have to be saved in a subsequent backup. This even works if bytes are inserted
or removed at arbitrary positions within the file.

12.1.10 Threat Model

The design goals for restic include being able to securely store backups in a location that is not completely trusted, e.g.
a shared system where others can potentially access the files or (in the case of the system administrator) even modify
or delete them.

General assumptions:

• The host system a backup is created on is trusted. This is the most basic requirement, and essential for creating
trustworthy backups.

The restic backup program guarantees the following:

• Accessing the unencrypted content of stored files and metadata should not be possible without a password for
the repository. Everything except the metadata included for informational purposes in the key files is encrypted
and authenticated.

• Modifications (intentional or unintentional) can be detected automatically on several layers:

1. For all accesses of data stored in the repository it is checked whether the cryptographic hash of the contents
matches the storage ID (the file’s name). This way, modifications (bad RAM, broken harddisk) can be
detected easily.

2. Before decrypting any data, the MAC on the encrypted data is checked. If there has been a modification,
the MAC check will fail. This step happens even before the data is decrypted, so data that has been
tampered with is not decrypted at all.

However, the restic backup program is not designed to protect against attackers deleting files at the storage location.
There is nothing that can be done about this. If this needs to be guaranteed, get a secure location without any access
from third parties. If you assume that attackers have write access to your files at the storage location, attackers are
able to figure out (e.g. based on the timestamps of the stored files) which files belong to what snapshot. When only
these files are deleted, the particular snapshot vanished and all snapshots depending on data that has been added in the
snapshot cannot be restored completely. Restic is not designed to detect this attack.

12.2 Local Cache

In order to speed up certain operations, restic manages a local cache of data. This document describes the data
structures for the local cache with version 1.

12.2. Local Cache 59

restic, Release 0.8.3

12.2.1 Versions

The cache directory is selected according to the XDG base dir specification. Each repository has its own cache
sub-directory, consting of the repository ID which is chosen at init. All cache directories for different repos are
independent of each other.

The cache dir for a repo contains a file named version, which contains a single ASCII integer line that stands for
the current version of the cache. If a lower version number is found the cache is recreated with the current version. If
a higher version number is found the cache is ignored and left as is.

12.2.2 Snapshots, Data and Indexes

Snapshot, Data and Index files are cached in the sub-directories snapshots, data and index, as read from the
repository.

12.2.3 Expiry

Whenever a cache directory for a repo is used, that directory’s modification timestamp is updated to the current time.
By looking at the modification timestamps of the repo cache directories it is easy to decide which directories are old
and haven’t been used in a long time. Those are probably stale and can be removed.

12.3 REST Backend

Restic can interact with HTTP Backend that respects the following REST API.

The following values are valid for {type}:

• data

• keys

• locks

• snapshots

• index

• config

The API version is selected via the Accept HTTP header in the request. The following values are defined:

• application/vnd.x.restic.rest.v1 or empty: Select API version 1

• application/vnd.x.restic.rest.v2: Select API version 2

The server will respond with the value of the highest version it supports in the Content-Type HTTP response
header for the HTTP requests which should return JSON. Any different value for this header means API version 1.

The placeholder {path} in this document is a path to the repository, so that multiple different repositories can be
accessed. The default path is /. The path must end with a slash.

12.3.1 POST {path}?create=true

This request is used to initially create a new repository. The server responds with “200 OK” if the repository structure
was created successfully or already exists, otherwise an error is returned.

60 Chapter 12. References

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

restic, Release 0.8.3

12.3.2 DELETE {path}

Deletes the repository on the server side. The server responds with “200 OK” if the repository was successfully
removed. If this function is not implemented the server returns “501 Not Implemented”, if this it is denied by the
server it returns “403 Forbidden”.

12.3.3 HEAD {path}/config

Returns “200 OK” if the repository has a configuration, an HTTP error otherwise.

12.3.4 GET {path}/config

Returns the content of the configuration file if the repository has a configuration, an HTTP error otherwise.

Response format: binary/octet-stream

12.3.5 POST {path}/config

Returns “200 OK” if the configuration of the request body has been saved, an HTTP error otherwise.

12.3.6 GET {path}/{type}/

API version 1

Returns a JSON array containing the names of all the blobs stored for a given type, example:

[
"245bc4c430d393f74fbe7b13325e30dbde9fb0745e50caad57c446c93d20096b",
"85b420239efa1132c41cea0065452a40ebc20c6f8e0b132a5b2f5848360973ec",
"8e2006bb5931a520f3c7009fe278d1ebb87eb72c3ff92a50c30e90f1b8cf3e60",
"e75c8c407ea31ba399ab4109f28dd18c4c68303d8d86cc275432820c42ce3649"

]

API version 2

Returns a JSON array containing an object for each file of the given type. The objects have two keys: name for the
file name, and size for the size in bytes.

[
{
"name": "245bc4c430d393f74fbe7b13325e30dbde9fb0745e50caad57c446c93d20096b",
"size": 2341058

},
{
"name": "85b420239efa1132c41cea0065452a40ebc20c6f8e0b132a5b2f5848360973ec",
"size": 2908900

},
{
"name": "8e2006bb5931a520f3c7009fe278d1ebb87eb72c3ff92a50c30e90f1b8cf3e60",
"size": 3030712

},

(continues on next page)

12.3. REST Backend 61

restic, Release 0.8.3

(continued from previous page)

{
"name": "e75c8c407ea31ba399ab4109f28dd18c4c68303d8d86cc275432820c42ce3649",
"size": 2804

}
]

12.3.7 HEAD {path}/{type}/{name}

Returns “200 OK” if the blob with the given name and type is stored in the repository, “404 not found” otherwise. If
the blob exists, the HTTP header Content-Length is set to the file size.

12.3.8 GET {path}/{type}/{name}

Returns the content of the blob with the given name and type if it is stored in the repository, “404 not found” otherwise.

If the request specifies a partial read with a Range header field, then the status code of the response is 206 instead of
200 and the response only contains the specified range.

Response format: binary/octet-stream

12.3.9 POST {path}/{type}/{name}

Saves the content of the request body as a blob with the given name and type, an HTTP error otherwise.

Request format: binary/octet-stream

12.3.10 DELETE {path}/{type}/{name}

Returns “200 OK” if the blob with the given name and type has been deleted from the repository, an HTTP error
otherwise.

62 Chapter 12. References

CHAPTER 13

Talks

The following talks will be or have been given about restic:

• 2016-01-31: Lightning Talk at the Go Devroom at FOSDEM 2016, Brussels, Belgium

• 2016-01-29: restic - Backups mal richtig: Public lecture in German at CCC Cologne e.V. in Cologne, Germany

• 2015-08-23: A Solution to the Backup Inconvenience: Lecture at FROSCON 2015 in Bonn, Germany

• 2015-02-01: Lightning Talk at FOSDEM 2015: A short introduction (with slightly outdated command line)

• 2015-01-27: Talk about restic at CCC Aachen (in German)

63

https://media.ccc.de/v/c4.openchaos.2016.01.restic
https://koeln.ccc.de
https://programm.froscon.de/2015/events/1515.html
https://www.froscon.de
https://www.youtube.com/watch?v=oM-MfeflUZ8&t=11m40s
https://videoag.fsmpi.rwth-aachen.de/?view=player&lectureid=4442#content

restic, Release 0.8.3

64 Chapter 13. Talks

CHAPTER 14

FAQ

This is the list of Frequently Asked Questions for restic.

14.1 restic check reports packs that aren’t referenced in any in-
dex, is my repository broken?

When restic check reports that there are pack files in the repository that are not referenced in any index, that’s
(in contrast to what restic reports at the moment) not a source for concern. The output looks like this:

$ restic check
Create exclusive lock for repository
Load indexes
Check all packs
pack 819a9a52e4f51230afa89aefbf90df37fb70996337ae57e6f7a822959206a85e: not referenced
→˓in any index
pack de299e69fb075354a3775b6b045d152387201f1cdc229c31d1caa34c3b340141: not referenced
→˓in any index
Check snapshots, trees and blobs
Fatal: repository contains errors

The message means that there is more data stored in the repo than strictly necessary. With high probability this is
duplicate data. In order to clean it up, the command restic prune can be used. The cause of this bug is not yet
known.

14.2 How can I specify encryption passwords automatically?

When you run restic backup, you need to enter the passphrase on the console. This is not very convenient
for automated backups, so you can also provide the password through the --password-file option, or one of
the environment variables RESTIC_PASSWORD or RESTIC_PASSWORD_FILE. A discussion is in progress over
implementing unattended backups happens in #533.

65

https://github.com/restic/restic/issues/533

restic, Release 0.8.3

Important: Be careful how you set the environment; using the env command, a system() call or using inline shell
scripts (e.g. RESTIC_PASSWORD=password restic . . .) might expose the credentials in the process list directly and
they will be readable to all users on a system. Using export in a shell script file should be safe, however, as the
environment of a process is accessible only to that user. Please make sure that the permissions on the files where the
password is eventually stored are safe (e.g. 0600 and owned by root).

14.3 How to prioritize restic’s IO and CPU time

If you’d like to change the IO priority of restic, run it in the following way

$ ionice -c2 -n0 ./restic -r /media/your/backup/ backup /home

This runs restic in the so-called best effort class (-c2), with the highest possible priority (-n0).

Take a look at the ionice manpage to learn about the other classes.

To change the CPU scheduling priority to a higher-than-standard value, use would run:

$ nice --10 ./restic -r /media/your/backup/ backup /home

Again, the nice manpage has more information.

You can also combine IO and CPU scheduling priority:

$ ionice -c2 nice -n19 ./restic -r /media/gour/backup/ backup /home

This example puts restic in the IO class 2 (best effort) and tells the CPU scheduling algorithm to give it the least
favorable niceness (19).

The above example makes sure that the system the backup runs on is not slowed down, which is particularly useful for
servers.

14.4 Creating new repo on a Synology NAS via sftp fails

Sometimes creating a new restic repository on a Synology NAS via sftp fails with an error similar to the following:

$ restic init -r sftp:user@nas:/volume1/restic-repo init
create backend at sftp:user@nas:/volume1/restic-repo/ failed:

mkdirAll(/volume1/restic-repo/index): unable to create directories: [...]

Although you can log into the NAS via SSH and see that the directory structure is there.

The reason for this behavior is that apparently Synology NAS expose a different directory structure via sftp, so the
path that needs to be specified is different than the directory structure on the device and maybe even as exposed via
other protocols.

Try removing the /volume1 prefix in your paths. If this does not work, use sftp and ls to explore the SFTP file system
hierarchy on your NAS.

The following may work:

$ restic init -r sftp:user@nas:/restic-repo init

66 Chapter 14. FAQ

https://security.stackexchange.com/questions/14000/environment-variable-accessibility-in-linux/14009#14009
https://linux.die.net/man/1/ionice
https://linux.die.net/man/1/nice

CHAPTER 15

Manual

15.1 Usage help

Usage help is available:

$./restic --help
restic is a backup program which allows saving multiple revisions of files and
directories in an encrypted repository stored on different backends.

Usage:
restic [command]

Available Commands:
backup Create a new backup of files and/or directories
cat Print internal objects to stdout
check Check the repository for errors
diff Show differences between two snapshots
dump Print a backed-up file to stdout
find Find a file or directory
forget Remove snapshots from the repository
generate Generate manual pages and auto-completion files (bash, zsh)
help Help about any command
init Initialize a new repository
key Manage keys (passwords)
list List objects in the repository
ls List files in a snapshot
migrate Apply migrations
mount Mount the repository
prune Remove unneeded data from the repository
rebuild-index Build a new index file
restore Extract the data from a snapshot
snapshots List all snapshots
tag Modify tags on snapshots
unlock Remove locks other processes created

(continues on next page)

67

restic, Release 0.8.3

(continued from previous page)

version Print version information

Flags:
--cacert stringSlice path to load root certificates from (default: use

→˓system certificates)
--cache-dir string set the cache directory
--cleanup-cache auto remove old cache directories

-h, --help help for restic
--json set output mode to JSON for commands that support it
--limit-download int limits downloads to a maximum rate in KiB/s.

→˓(default: unlimited)
--limit-upload int limits uploads to a maximum rate in KiB/s. (default:

→˓unlimited)
--no-cache do not use a local cache
--no-lock do not lock the repo, this allows some operations on

→˓read-only repos
-o, --option key=value set extended option (key=value, can be specified

→˓multiple times)
-p, --password-file string read the repository password from a file (default:

→˓$RESTIC_PASSWORD_FILE)
-q, --quiet do not output comprehensive progress report
-r, --repo string repository to backup to or restore from (default:

→˓$RESTIC_REPOSITORY)
--tls-client-cert string path to a file containing PEM encoded TLS client

→˓certificate and private key
-v, --verbose count[=-1] be verbose (can be specified multiple times)

Use "restic [command] --help" for more information about a command.

Similar to programs such as git, restic has a number of sub-commands. You can see these commands in the listing
above. Each sub-command may have own command-line options, and there is a help option for each command which
lists them, e.g. for the backup command:

$./restic backup --help
The "backup" command creates a new snapshot and saves the files and directories
given as the arguments.

Usage:
restic backup [flags] FILE/DIR [FILE/DIR] ...

Flags:
-e, --exclude pattern exclude a pattern (can be specified multiple

→˓times)
--exclude-caches excludes cache directories that are marked

→˓with a CACHEDIR.TAG file
--exclude-file file read exclude patterns from a file (can be

→˓specified multiple times)
--exclude-if-present stringArray takes filename[:header], exclude contents of

→˓directories containing filename (except filename itself) if header of that file is
→˓as provided (can be specified multiple times)

--files-from string read the files to backup from file (can be
→˓combined with file args)
-f, --force force re-reading the target files/

→˓directories (overrides the "parent" flag)
-h, --help help for backup

--hostname hostname set the hostname for the snapshot manually.
→˓To prevent an expensive rescan use the "parent" flag

(continues on next page)

68 Chapter 15. Manual

restic, Release 0.8.3

(continued from previous page)

-x, --one-file-system exclude other file systems
--parent string use this parent snapshot (default: last

→˓snapshot in the repo that has the same target files/directories)
--stdin read backup from stdin
--stdin-filename string file name to use when reading from stdin

→˓(default "stdin")
--tag tag add a tag for the new snapshot (can be

→˓specified multiple times)
--time string time of the backup (ex. '2012-11-01 22:08:41

→˓') (default: now)
--with-atime store the atime for all files and directories

Global Flags:
--cacert stringSlice path to load root certificates from (default: use

→˓system certificates)
--cache-dir string set the cache directory
--cleanup-cache auto remove old cache directories
--json set output mode to JSON for commands that support it
--limit-download int limits downloads to a maximum rate in KiB/s.

→˓(default: unlimited)
--limit-upload int limits uploads to a maximum rate in KiB/s. (default:

→˓unlimited)
--no-cache do not use a local cache
--no-lock do not lock the repo, this allows some operations on

→˓read-only repos
-o, --option key=value set extended option (key=value, can be specified

→˓multiple times)
-p, --password-file string read the repository password from a file (default:

→˓$RESTIC_PASSWORD_FILE)
-q, --quiet do not output comprehensive progress report
-r, --repo string repository to backup to or restore from (default:

→˓$RESTIC_REPOSITORY)
--tls-client-cert string path to a file containing PEM encoded TLS client

→˓certificate and private key
-v, --verbose n[=-1] be verbose (specify --verbose multiple times or

→˓level n)

Subcommand that support showing progress information such as backup, check and prune will do so unless the
quiet flag -q or --quiet is set. When running from a non-interactive console progress reporting will be limited to
once every 10 seconds to not fill your logs. Use backup with the quiet flag -q or --quiet to skip the initial scan
of the source directory, this may shorten the backup time needed for large directories.

Additionally on Unix systems if restic receives a SIGUSR1 signal the current progress will be written to the
standard output so you can check up on the status at will.

15.2 Manage tags

Managing tags on snapshots is done with the tag command. The existing set of tags can be replaced completely, tags
can be added or removed. The result is directly visible in the snapshots command.

Let’s say we want to tag snapshot 590c8fc8 with the tags NL and CH and remove all other tags that may be present,
the following command does that:

15.2. Manage tags 69

restic, Release 0.8.3

$ restic -r /srv/restic-repo tag --set NL --set CH 590c8fc8
create exclusive lock for repository
modified tags on 1 snapshots

Note the snapshot ID has changed, so between each change we need to look up the new ID of the snapshot. But there
is an even better way, the tag command accepts --tag for a filter, so we can filter snapshots based on the tag we
just added.

So we can add and remove tags incrementally like this:

$ restic -r /srv/restic-repo tag --tag NL --remove CH
create exclusive lock for repository
modified tags on 1 snapshots

$ restic -r /srv/restic-repo tag --tag NL --add UK
create exclusive lock for repository
modified tags on 1 snapshots

$ restic -r /srv/restic-repo tag --tag NL --remove NL
create exclusive lock for repository
modified tags on 1 snapshots

$ restic -r /srv/restic-repo tag --tag NL --add SOMETHING
no snapshots were modified

15.3 Under the hood

15.3.1 Browse repository objects

Internally, a repository stores data of several different types described in the design documentation. You can list
objects such as blobs, packs, index, snapshots, keys or locks with the following command:

$ restic -r /srv/restic-repo list snapshots
d369ccc7d126594950bf74f0a348d5d98d9e99f3215082eb69bf02dc9b3e464c

The find command searches for a given pattern in the repository.

$ restic -r backup find test.txt
debug log file restic.log
debug enabled
enter password for repository:
found 1 matching entries in snapshot
→˓196bc5760c909a7681647949e80e5448e276521489558525680acf1bd428af36
-rw-r--r-- 501 20 5 2015-08-26 14:09:57 +0200 CEST path/to/test.txt

The cat command allows you to display the JSON representation of the objects or their raw content.

$ restic -r /srv/restic-repo cat snapshot
→˓d369ccc7d126594950bf74f0a348d5d98d9e99f3215082eb69bf02dc9b3e464c
enter password for repository:
{

"time": "2015-08-12T12:52:44.091448856+02:00",
"tree": "05cec17e8d3349f402576d02576a2971fc0d9f9776ce2f441c7010849c4ff5af",
"paths": [

(continues on next page)

70 Chapter 15. Manual

https://github.com/restic/restic/blob/master/doc/Design.rst
http://golang.org/pkg/path/filepath/#Match

restic, Release 0.8.3

(continued from previous page)

"/home/user/work"
],
"hostname": "kasimir",
"username": "username",
"uid": 501,
"gid": 20

}

15.3.2 Metadata handling

Restic saves and restores most default attributes, including extended attributes like ACLs. Sparse files are not handled
in a special way yet, and aren’t restored.

The following metadata is handled by restic:

• Name

• Type

• Mode

• ModTime

• AccessTime

• ChangeTime

• UID

• GID

• User

• Group

• Inode

• Size

• Links

• LinkTarget

• Device

• Content

• Subtree

• ExtendedAttributes

15.4 Scripting

Restic supports the output of some commands in JSON format, the JSON data can then be processed by other programs
(e.g. jq). The following example lists all snapshots as JSON and uses jq to pretty-print the result:

$ restic -r /srv/restic-repo snapshots --json | jq .
[

{

(continues on next page)

15.4. Scripting 71

https://stedolan.github.io/jq/

restic, Release 0.8.3

(continued from previous page)

"time": "2017-03-11T09:57:43.26630619+01:00",
"tree": "bf25241679533df554fc0fd0ae6dbb9dcf1859a13f2bc9dd4543c354eff6c464",
"paths": [

"/home/work/doc"
],
"hostname": "kasimir",
"username": "fd0",
"uid": 1000,
"gid": 100,
"id": "bbeed6d28159aa384d1ccc6fa0b540644b1b9599b162d2972acda86b1b80f89e"

},
{
"time": "2017-03-11T09:58:57.541446938+01:00",
"tree": "7f8c95d3420baaac28dc51609796ae0e0ecfb4862b609a9f38ffaf7ae2d758da",
"paths": [

"/home/user/shared"
],
"hostname": "kasimir",
"username": "fd0",
"uid": 1000,
"gid": 100,
"id": "b157d91c16f0ba56801ece3a708dfc53791fe2a97e827090d6ed9a69a6ebdca0"

}
]

15.5 Temporary files

During some operations (e.g. backup and prune) restic uses temporary files to store data. These files will, by
default, be saved to the system’s temporary directory, on Linux this is usually located in /tmp/. The environment
variable TMPDIR can be used to specify a different directory, e.g. to use the directory /var/tmp/restic-tmp
instead of the default, set the environment variable like this:

$ export TMPDIR=/var/tmp/restic-tmp
$ restic -r /srv/restic-repo backup ~/work

15.6 Caching

Restic keeps a cache with some files from the repository on the local machine. This allows faster operations, since
meta data does not need to be loaded from a remote repository. The cache is automatically created, usually in an
OS-specific cache folder:

• Linux/other: ~/.cache/restic (or $XDG_CACHE_HOME/restic)

• macOS: ~/Library/Caches/restic

• Windows: %LOCALAPPDATA%/restic

The command line parameter --cache-dir can each be used to override the default cache location. The parameter
--no-cache disables the cache entirely. In this case, all data is loaded from the repo.

The cache is ephemeral: When a file cannot be read from the cache, it is loaded from the repository.

Within the cache directory, there’s a sub directory for each repository the cache was used with. Restic updates the
timestamps of a repo directory each time it is used, so by looking at the timestamps of the sub directories of the cache

72 Chapter 15. Manual

restic, Release 0.8.3

directory it can decide which sub directories are old and probably not needed any more. You can either remove these
directories manually, or run a restic command with the --cleanup-cache flag.

15.6. Caching 73

	Introduction
	Installation
	Packages
	Official Binaries
	Docker Container
	From Source
	Autocompletion

	Preparing a new repository
	Local
	SFTP
	REST Server
	Amazon S3
	Minio Server
	OpenStack Swift
	Backblaze B2
	Microsoft Azure Blob Storage
	Google Cloud Storage
	Other Services via rclone
	Password prompt on Windows

	Backing up
	Including and Excluding Files
	Comparing Snapshots
	Backing up special items and metadata
	Reading data from stdin
	Tags for backup

	Working with repositories
	Listing all snapshots
	Checking a repo’s integrity and consistency

	Restoring from backup
	Restoring from a snapshot
	Restore using mount
	Printing files to stdout

	Removing backup snapshots
	Remove a single snapshot
	Removing snapshots according to a policy

	Encryption
	Manage repository keys

	Scripting
	Check if a repository is already initialized

	Examples
	Setting up restic with Amazon S3
	Backing up your system without running restic as root

	Participating
	Debugging
	Contributing
	Security
	Compatibility
	Building documentation

	References
	Design
	Local Cache
	REST Backend

	Talks
	FAQ
	restic check reports packs that aren’t referenced in any index, is my repository broken?
	How can I specify encryption passwords automatically?
	How to prioritize restic’s IO and CPU time
	Creating new repo on a Synology NAS via sftp fails

	Manual
	Usage help
	Manage tags
	Under the hood
	Scripting
	Temporary files
	Caching

